
Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Oracle 11g Reference Partitioning –
Benefits, Hazards & Other Considerations

Andrew V. Zitelli
Thales-Raytheon Systems
zitelli@raytheon.com

NoCOUG Spring Conference 2010
May 20, 2010 – Redwood Shores, California

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Regarding Software Complexity
There are two ways of constructing a software design:
One way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies.
The first method is far more difficult. C.A.R. Hoare

Increasingly, people seem to misinterpret complexity
as sophistication, which is baffling --
the incomprehensible should cause suspicion rather
than admiration. Niklaus Wirth

2

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Who Am I

• Bay Area native & graduate of UC Berkeley.

• Software developer for 35 years.

• Member of the OakTable Network.

• ACM member since 1974.

• Working with Oracle database products since 1992.
– 10 other relational database products since 1982.

• With Thales-Raytheon Systems, Fullerton, CA since 2001.
– Joint venture of aerospace firms Thales (France) and Raytheon (USA).

• Primarily working on new development of large multi-tier
applications with complex Oracle databases.

3

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Contents

• Introduction 5

• Partitioning Overview 6 – 8

• Reference Partitioning
Overview 9 – 13

• Reference Partitioning
Restrictions 14 – 16

• Comparison of Data
Removal Methods 17 – 23

• Table and Partition
Truncation Considerations 24 – 28

• Row Migration
Considerations 29 – 32

• Row Migration
Deadlock Risks 33 – 35

• Local Index Considerations 36 – 41

• Partition-Wise Joins 42 – 44

• Partition Splits, Merges
& Exchanges 45

• Summary & Conclusions 46 – 48

• References 30

• Appendix A:
Recommended Patches 51 – 53

• Appendix B: Tools Used
for 10046 Trace File Analysis 54 – 56

4

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Introduction

• Oracle 11g introduced a new table partitioning method known
as “Reference Partitioning.”

• Reference Partitioning is Oracle’s first partitioning method to
support the partitioning of multiple tables together.

• In normalized data models, a single logical entity is often
represented by multiple tables.
– These are typically connected within a database using referential

(foreign key) constraints.

• The distribution of a logical entity's data across multiple tables
raises several problems for single table partitioning methods.

• Reference partitioning alleviates many problems associated
with single table partitioning, but adds some new restrictions.

5

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

What Is Table Partitioning?

• Table partitioning physically collocates rows of data which
share a common characteristic.
– The common characteristic is

know as the partition key and
is derived from the values of one
or more columns in a table.

– Within a partitioned table, all
rows in a given database block
will belong to the same partition.

• Partitioning was originally introduced, primarily to simplify the
management of large data sets.

• Other commonly cited benefits of partitioning include improved
database performance and improved data availability.

STATE = CA
STATE = OH
STATE = KS
STATE = WI
STATE = MI
STATE = TX

Partitioned Table

6

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

 Example of Partitioned vs.
Non-Partitioned Table

CREATE TABLE CUSTOMER_RECEIPTS (
 RECEIPT_NO NUMBER NOT NULL,
 TRANSACTION_DATE DATE NOT NULL,
 TOTAL_RECEIVED NUMBER NOT NULL)
 PARTITION BY RANGE (TRANSACTION_DATE) (
 PARTITION P_2010_01 VALUES LESS THAN
 (TO_DATE('2009-02-01', 'YYYY-MM-DD')),
 PARTITION P_2010_02 VALUES LESS THAN
 (TO_DATE('2009-03-01', 'YYYY-MM-DD')),
 PARTITION P_2010_03 VALUES LESS THAN
 (TO_DATE('2009-04-01', 'YYYY-MM-DD')));

CUSTOMER
RECEIPTS

 Partition P_2010_03

Partition P_2010_02

 Partition P_2010_01
All rows whose
transaction_dates
fall within the same
month, will reside in
the same partition.

CUSTOMER
RECEIPTS

CREATE TABLE CUSTOMER_RECEIPTS (
 RECEIPT_NO NUMBER NOT NULL,
 TRANSACTION_DATE DATE NOT NULL,
 TOTAL_RECEIVED NUMBER NOT NULL);

Rows will be
intermingled
regardless of their
transaction_date
values.

7

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Oracle 11g Partitioning Methods

• Oracle 11g's partitioning methods are Range, List, Hash,
System, Interval and Reference partitioning.
– Range partitioning is based on the partition key falling within a

specified range of values.

– List partitioning is based on each partition being associated with an
explicit list of values.

– Hash partitioning uses a hash function applied to one or more
columns, to uniquely determine the partition for each row in a table.

– System partitioning relies on the corresponding SQL INSERT or
UPDATE statement to specify the partition to be used for each row.

– Interval partitioning is based on the Range partitioning method, with
Oracle automatically creating new partitions using a predefined interval.

– Oracle also supports subpartitions which allow composite partitions
based on range, list and hash methods (e.g., range-hash partitions).

8

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

What Is Reference Partitioning?

• Reference Partitioning "equi-partitions" two tables, based
on a foreign key constraint.
– Child table rows will be partitioned to match the partitioning of the

corresponding parent table rows.

• Reference Partitioning supports hierarchies of tables all
partitioned based on
a single root table.

REGISTER
RECEIPTS
P_2009_Q1

LINE_ITEM
P_2009_Q1

LINE_ITEM
 DETAILS

P_2009_Q1

PAYMENTS
P_2009_Q1

REGISTER
RECEIPTS
P_2009_Q2

LINE_ITEM
P_2009_Q2

LINE_ITEM
 DETAILS

P_2009_Q2

PAYMENTS
P_2009_Q2PAYMENTS

P_2009_Q3
LINE_ITEM
P_2009_Q3

LINE_ITEM
 DETAILS

P_2009_Q3

REGISTER
RECEIPTS
P_2009_Q3

REGISTER
RECEIPTS
P_2009_Q4

LINE_ITEM
P_2009_Q4

LINE_ITEM
 DETAILS

P_2009_Q4

PAYMENTS
P_2009_Q4

REGISTER
RECEIPTS
P_2010_Q1

LINE_ITEM
P_2010_Q1

LINE_ITEM
DETAILS

P_2010_Q1

PAYMENTS
P_2010_Q1

9

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Some of Reference Partitioning’s Advantages

• It removes the need to individually partition related tables.
– Developers and administrators are no longer responsible to assure

related tables are partitioned the same, with all rows synchronized.

• Partition key columns no longer need to be replicated across
multiple tables, solely to support matching partitions.
– This improves data integrity by eliminating situations in which replicated

columns can become out of sync, between related tables.
– It guarantees that every child table row's corresponding parent row,

must reside in the partition matching the child row's partition.
– Without reference partitioning, it is possible for a child row to have a

different partition key value than its parent.

• It simplifies certain data manipulation operations.
– ADD, DROP, SPLIT and MERGE partition operations are only carried

out on the root table, automatically cascading to descendants.

10

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Reference Partitioning Details (1)

• The root for a reference partitioning hierarchy must use List,
Range, or Hash partitioning or a sub-partitioned composite.

 CREATE TABLE PARENT_TAB
 PARENT_ID NUMBER NOT NULL,
 PARENT_NAME VARCHAR2 (30) NOT NULL,
 LOCAL_TRANSACTION_TIME TIMESTAMP NOT NULL,
 CONSTRAINT PK_PARENT PRIMARY KEY (PID))
 PARTITION BY RANGE (LOCAL_TRANSACTION_TIME) (
 PARTITION P_20090206 VALUES LESS THAN (TIMESTAMP' 2009-02-07 00:00:00'),
 PARTITION P_20090207 VALUES LESS THAN (TIMESTAMP' 2009-02-08 00:00:00'),
 PARTITION P_20090209 VALUES LESS THAN (TIMESTAMP' 2009-02-09 00:00:00'))
 ENABLE ROW MOVEMENT;

• The DDL for each remaining table in a reference partitioned
hierarchy identifies only the table's partitioning constraint.

 CREATE TABLE CHILD_A (
 CHILD_A_ID NUMBER
 PID NUMBER NOT NULL,
 CLASSIFICATION NUMBER,
 CONSTRAINT PK_CHILD_A PRIMARY KEY (CHILD_ID),
 CONSTRAINT FK_CHILD_A_TO_PARENT FOREIGN KEY (PID) REFERENCES PARENT_TAB (PARENT_ID))
 PARTITION BY REFERENCE (FK_CHILD_A_TO_PARENT)
 ENABLE ROW MOVEMENT;

11

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Reference Partitioning Details (2)

• Reference partitioning is specified during table creation.
– Existing tables cannot be altered later, to add reference partitioning.

• The contents of reference partitioned tables are not
intermingled with their parents.
– Each partition, for each table, uses a separate database segment.
– Reference partitioned tables will contain a separate partition for each

partition and sub-partition in the root table.

• Most reference partition characteristics are inherited from
corresponding partitions in the parent table.
– Partition names, physical and storage characteristics may optionally

differ between child and parent table partitions.
– Oracle 11g’s SQL syntax has been expanded to support these

differences between parent and child table partitions.

12

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Reference Partitioning Details (3)

• Reference partitioned tables may reference or be referenced
by tables outside the partitioning hierarchy.
– Data Pump bugs in Oracle 11.1 and 11.2 may interfere with table

creation and importing of data when reference partitioned child tables
have foreign key constraints other than their partitioning constraints.

• Oracle indexes may also be partitioned but there is no
“reference partitioning” for indexes.

• Omission of indexes on partitioning constraints can result in
full partition scans during DML operations.
– This can occur for tables several generations removed from the table

being modified.

13

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Reference Partitioning Restrictions (1)

• Parent table Primary Key and Unique constraints used for
reference partitioning must be enabled and non-deferrable.
ALTER TABLE PARENT_TAB DISABLE CONSTRAINT UK_PARENT

ORA-02297: cannot disable constraint (RHT.UK_PARENT) - dependencies exist

• Child table “partitioning constraints” must be enabled and
non-deferrable.
ALTER TABLE CHILD_A DISABLE CONSTRAINT FK_CHILD_A_TO_PARENT

ORA-14650: operation not supported for reference-partitioned tables

• All child table columns used in “partitioning constraints” must
be defined as NOT NULL.
– This is required to assure that every child row maps to exactly one

parent row.

14

• Child tables created using reference partitioning can never
be disassociated from their parents without being dropped.
– There is no ALTER TABLE command to convert a reference

partitioned table into a non-reference partitioned table.

• As with other tables referenced via foreign key constraints,
parent tables cannot be dropped until all foreign key
constraints referencing them are removed.
– In the case of reference partitioning, this means all descendent

tables must first be dropped, since the partitioning constraints on
the child tables cannot be disabled or dropped.

– For example, table CHILD_A cannot be
dropped until GRANDCHILD_A1 and
GRANDCHILD_A2 are first dropped.

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Reference Partitioning Restrictions (2)

Parent

Child_CChild_BChild_A

Grand
child_A1

Grand
child_A2

15

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Reference Partitioning Restrictions (3)

• Oracle 11.1 and 11.2 Reference Partitioning does not
support use of Oracle 11's Interval partitioning method.
– That is to say, automatic generation of new partitions is not

currently supported.

• You cannot create reference partitioned tables using a
CREATE TABLE ... AS SELECT statement.

• These pages highlight several key restrictions but the
list is not comprehensive.

16

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Comparison of Data Removal Using
Partitioned and non-Partitioned Methods

• In the following examples, partitioned data is range partitioned using the
column "LOCAL_TRANSACTION_TIME."

• Under Reference Partitioning, this column is only required in Parent table.

Parent

Child_CChild_BChild_A

Grand
Child_A1

Grand
Child_A2

17

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Test Case 1: SQL Needed to Drop the Oldest
Partition Using Single Table Partitioning

• SQL used to drop the oldest partition using range partitioning.
– Foreign key constraints must be disabled for each child table while the

corresponding parent table’s partition is dropped.
– The partition key column(s) must be replicated in each table.
ALTER TABLE GRANDCHILD_A1 DROP PARTITION P_20090206 UPDATE INDEXES;
ALTER TABLE GRANDCHILD_A2 DROP PARTITION P_20090206 UPDATE INDEXES;
ALTER TABLE CHILD_B DROP PARTITION P_20090206 UPDATE INDEXES;
ALTER TABLE CHILD_C DROP PARTITION P_20090206 UPDATE INDEXES;

ALTER TABLE GRANDCHILD_A1 DISABLE CONSTRAINT FK_GCHILDA1_TO_CHILDA;
ALTER TABLE GRANDCHILD_A2 DISABLE CONSTRAINT FK_GCHILDA2_TO_CHILDA;
ALTER TABLE CHILD_A DROP PARTITION P_20090206 UPDATE INDEXES;
ALTER TABLE GRANDCHILD_A1 ENABLE CONSTRAINT FK_GCHILDA1_TO_CHILDA;
ALTER TABLE GRANDCHILD_A2 ENABLE CONSTRAINT FK_GCHILDA2_TO_CHILDA;

ALTER TABLE CHILD_A DISABLE CONSTRAINT FK_CHILDA_TO_PARENT;
ALTER TABLE CHILD_B DISABLE CONSTRAINT FK_CHILDA_TO_PARENT;
ALTER TABLE CHILD_C DISABLE CONSTRAINT FK_CHILDA_TO_PARENT;
ALTER TABLE PARENT DROP PARTITION P_20090206 UPDATE INDEXES;
ALTER TABLE CHILD_A ENABLE CONSTRAINT FK_CHILDA_TO_PARENT;
ALTER TABLE CHILD_B ENABLE CONSTRAINT FK_CHILDB_TO_PARENT;
ALTER TABLE CHILD_C ENABLE CONSTRAINT FK_CHILDC_TO_PARENT;

Parent

Child_CChild_BChild_A

Grand
child_A1

Grand
child_A2

18

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Test Cases 2 & 3: SQL Needed to Delete the
Oldest Equivalent Data without any Partitioning

• SQL to delete same data when partitioning is not used and
CASCADE DELETE not defined on foreign key constraints.
– Column(s) matching the partition key must be added to each table.
– DELETE statements must be issued in the proper order, to assure

all child rows are deleted before any corresponding parent rows.
DELETE GRANDCHILD_A1 WHERE LOCAL_TRANSACTION_TIME < TO_DATE ('2009-02-07');
DELETE GRANDCHILD_A2 WHERE LOCAL_TRANSACTION_TIME < TO_DATE ('2009-02-07');
DELETE CHILD_A WHERE LOCAL_TRANSACTION_TIME < TO_DATE ('2009-02-07’);
DELETE CHILD_B WHERE LOCAL_TRANSACTION_TIME < TO_DATE ('2009-02-07’);
DELETE CHILD_C WHERE LOCAL_TRANSACTION_TIME < TO_DATE ('2009-02-07’);
DELETE PARENT WHERE LOCAL_TRANSACTION_TIME < TO_DATE ('2009-02-07’);
COMMIT;

• SQL to delete data when ON DELETE CASCADE
is defined for all foreign key constraints.
DELETE PARENT WHERE LOCAL_TRANSACTION_TIME

< TO_DATE ('2009-02-07’);
COMMIT;

Parent

Child_CChild_BChild_A

Grand
child_A1

Grand
child_A2

19

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Test Case 4: SQL Needed to Drop the Oldest
Partition Using Reference Partitioning

• SQL used to drop the oldest partition using reference partitioning.
ALTER TABLE PARENT DROP PARTITION P_20090206 UPDATE INDEXES;

• This statement will cause the partition P_20090206 to be dropped
from all tables in the reference partitioned hierarchy, as a single
operation.

• The UPDATE INDEXES clause will assure that no global indexes are
invalidated on any tables. Other database sessions may use all
corresponding indexes during the DROP PARTITION operation.

Parent

Child_CChild_BChild_A

Grand
child_A1

Grand
child_A2

20

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Details regarding Tests as Conducted

Table
Name Num Rows Avg Row

Length*
8K Table
Blocks Indexes Index Leaf

Blocks
Rows

Removed

PARENT 15,000,000 377 1,099,302 7 269,664 1,000,000

CHILD_A 13,949,801 61 184,268 5 194,916 930,094

CHILD_B 1,050,199 14 5,293 2 6,571 69,906

CHILD_C 89,999,908 23 555,489 1 391,500 6,000,000

GRAND
CHILD_A1 13,949,801 354 976,511 2 106,587 930,094

GRAND
CHILD_A2 83,698,714 22 490,473 1 351,238 5,580,564

* Average Row Length, # Table Blocks and # Leaf Blocks reflect details for the Reference Partitioning test case.

21

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Observed Performance Metrics from Tests

Data Removal
Method LIO's† DB File

Reads‡

PIO
Blocks
Read†

EXEC
Calls

Total
Read
Time‡
(sec)

Total
CPU†

(sec)

Elapsed
Time†

(sec)
~ Redo

Reference
Partition
DROP

1,025,244 79,568 467,210 919 139 223 384 1.2 Gb

Single Table
Partition
DROP's*

2,189,679 91,437 1,672,248 2,417 220 643 1039 1.0 Gb

Single Table
DROP's

excluding FK’s
1,060,244 78,687 302,379 1906 128 226 386 1.0 Gb

Non-Partitioned
DELETE's 100,770,818 398,181 443,780 881 1430 830 2465 20 Gb

Non-Partitioned
with Cascaded

DELETE's
177,929,197 337,109 337,109 3,860,478 1903 1948 4110 29 Gb

* Single Table Partition Drops included overhead associated with the re-enabling of disabled foreign key constraints.
† LIO’s, PIO’s, CPU and Elapsed time were measured using Method R Corporation’s mrls tool (see Appendix B).
‡ DB File Reads and Total Read Time were measured using Method R Corporation’s mrskew tool (see Appendix B).

22

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Rationale for Excessive Overhead
Associated with Cascaded Deletes

• Oracle uses recursive SQL to execute an explicit DELETE against each
child table, where one or more rows exist corresponding to each parent
table row being removed.

• DELETE statements are only issued when corresponding child rows exist
for a given parent row.

PARSING IN CURSOR #11 len=63 dep=1 uid=0 oct=7 lid=0 tim=6898566654873 hv=853327986 ad='6aef09db0' sqlid='18 . . .
 delete from "DATA_REPL"."GRANDCHILD_A1" where "CHILD_A_ID" = :1
END OF STMT
EXEC #11:c=0,e=392,p=0,cr=4,cu=54,mis=0,r=6,dep=1,og=4,plh=712978407,tim=6898566654873
CLOSE #11:c=0,e=2,dep=1,type=3,tim=6898566654978
=====================
PARSING IN CURSOR #2 len=83 dep=3 uid=0 oct=7 lid=0 tim=6898566655727 hv=4202949588 ad='68e3f8570' sqlid='ca . . .
 delete from "DATA_REPL"."GRANDCHILD_A2" where "CHILD_A_ID" = :1
END OF STMT
EXEC #2:c=0,e=353,p=0,cr=4,cu=54,mis=0,r=6,dep=3,og=4,plh=3674908788,tim=6898566655727
CLOSE #2:c=0,e=3,dep=3,type=3,tim=6898566655898
=====================
PARSING IN CURSOR #6 len=78 dep=2 uid=0 oct=7 lid=0 tim=6898566655925 hv=3961620125 ad='67e134920' sqlid='g3 . . .
 delete from "DATA_REPL"."CHILD_A" where "PID" = :1
END OF STMT
EXEC #6:c=0,e=700,p=0,cr=7,cu=68,mis=0,r=1,dep=2,og=4,plh=1029372813,tim=6898566655925
CLOSE #6:c=0,e=2,dep=2,type=3,tim=6898566656023
=====================
PARSING IN CURSOR #7 len=65 dep=1 uid=0 oct=7 lid=0 tim=6898566656050 hv=3569125061 ad='67e137500' sqlid='b7 . . .
 delete from "DATA_REPL"."CHILD_C" where "PID" = :1
END OF STMT
EXEC #7:c=0,e=1030,p=0,cr=10,cu=89,mis=0,r=1,dep=1,og=4,plh=902635858,tim=6898566656049

23

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Table and Partition Truncation under
 Reference Partitioning (1)

• Leaf tables in a reference partitioned hierarchy may be truncated
using TRUNCATE TABLE.

TRUNCATE TABLE GRANDCHILD_A1;
TRUNCATE TABLE GRANDCHILD_A2;

TRUNCATE TABLE CHILD_B;

TRUNCATE TABLE CHILD_C;

• No parent tables may be truncated using TRUNCATE TABLE.
– TRUNCATE TABLE cannot be used when enabled foreign key

constraints reference a table.
– Partitioning constraints can never be disabled.

• Parent tables can be truncated by individually truncating each
partition using ALTER TABLE .. TRUNCATE PARTITION.

• All descendent partitions of a given partition must be empty before
the partition can be truncated.

Parent

Child_CChild_BChild_A

Grand
child_A1

Grand
child_A2

24

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Table and Partition Truncation under
 Reference Partitioning (2)

• An individual partition can be truncated throughout the hierarchy by
individually truncating it in each table.
– All descendants of a given partition must be empty before the partition can be

truncated so ordering of the TRUNCATE commands is significant.

• Example of SQL to truncate a partition throughout a hierarchy.
 ALTER TABLE GRANDCHILD_A1 TRUNCATE PARTITION P_20090208 DROP STORAGE UPDATE INDEXES;

 ALTER TABLE GRANDCHILD_A2 TRUNCATE PARTITION P_20090208 DROP STORAGE UPDATE INDEXES;

 ALTER TABLE CHILD_A TRUNCATE PARTITION P_20090208 DROP STORAGE UPDATE INDEXES;

 ALTER TABLE CHILD_B TRUNCATE PARTITION P_20090208 DROP STORAGE UPDATE INDEXES;

 ALTER TABLE CHILD_C TRUNCATE PARTITION P_20090208 DROP STORAGE UPDATE INDEXES;

 ALTER TABLE PARENT TRUNCATE PARTITION P_20090208 DROP STORAGE UPDATE INDEXES;

• No cascaded TRUNCATE PARTITION is supported.
• DROP STORAGE clause must be specified or storage

will be retained for future reuse by the partition.
• UPDATE INDEXES clause must be used or

all global indexes will be invalidated.

Parent

Child_CChild_BChild_A

Grand
child_A1

Grand
child_A2

25

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Data Removal
Method LIO's DB File

Reads

PIO
Blocks
Read

EXEC
Calls

Total
Read
Time
(sec)

Total
CPU
(sec)

Elapsed
Time
(sec)

~ Redo

Reference
Partition
DROP

1,025,244 79,568 467,210 919 139 223 384 1.2 Gb

Reference
Partition

TRUNCATE
1,679,726 109,705 687,358 1579 126 251 421 1.2 Gb

Test Case 2: Comparison of Drop Partition vs. Truncate
Partition when Using Reference Partitioning

• Partition truncate tests were based on the same table definitions and
data as the earlier DROP PARTITION tests.

• DROP STORAGE and UPDATE INDEXES clauses were used.

26

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Further Partition Truncation Details (1)

• Truncation of a given partition across all tables in a reference
partition hierarchy can be automated using PL/SQL.
– Child table partitions must always be truncated prior to corresponding

parent table partitions.
– Code must simply iterate through the partition hierarchy one

generation at a time.

• Referential constraints, other than partitioning constraints,
which reference tables in the partitioning hierarchy, must be
disabled before parent partitions can be truncated.
– Since referential (foreign key) constraints are disabled for an entire

table, the subsequent re-enabling of referential constraints for large
tables can incur a large amount of overhead.

27

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Further Partition Truncation Details (2)

• The column REF_PTN_CONSTRAINT_NAME has been
added to DBA_PART_TABLES, listing the name of the
partitioning constraint for reference partitioned (child) tables.
– This allows the Oracle data dictionary to be used to navigate through

a reference partitioned hierarchy.
– The following query provides an example for retrieving the table

names and parent table names for all reference partitioned tables
owned by the current user. This query excludes the root table(s).

 SELECT PTAB.TABLE_NAME "PARENT_TABLE", DPT.TABLE_NAME "CHILD_TABLE"
 FROM DBA_CONSTRAINTS PTAB, DBA_CONSTRAINTS DC, DBA_PART_TABLES DPT
 WHERE DC.OWNER = USER AND DPT.OWNER = DC.OWNER AND
 PTAB.OWNER = DC.OWNER AND
 DC.CONSTRAINT_NAME = DPT.REF_PTN_CONSTRAINT_NAME AND
 PTAB.CONSTRAINT_NAME = DC.R_CONSTRAINT_NAME
 ORDER BY PARENT_TABLE, CHILD_TABLE;

28

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Row Migration Considerations (1)

• Partitioned tables can be configured to enable or disable
the migration of rows between partitions.
– Rows may migrate when partition keys change.
– For child tables using reference partitioning, child rows will normally

migrate to a new partition when the parent rows migrate.
– Child rows may also migrate if their partitioning constraint columns

are modified to reference new parent rows.

• When reference partitions are used, all child tables (and
subsequent generations) of a parent table with migration
enabled, must also have migration enabled.
– CREATE TABLE … ENABLE ROW MOVEMENT is used for this.
– If row movement is not enabled as required, ORA-14661 will be

raised during the child table's creation:
ORA-14661: row movement must be enabled

29

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Row Migration Considerations (2)

• Migration of large numbers of rows within a reference partitioning
hierarchy can incur a large amount of overhead.

• Oracle uses recursive SQL to execute an explicit UPDATE statement
against each descendent row corresponding to every parent table row
which migrates.

• Based on the same data as earlier tests, row migration of 265,000 root
table rows caused the movement of 1.27 million descendant rows,
motivated the execution of an individual UPDATE command for each row:

 update "DATA_REPL"."CHILD_A" partition (dataobj_to_partition
 ("DATA_REPL"."PARENT", :1))
 move to partition (dataobj_to_partition("DATA_REPL"."PARENT", :1))
 set "PID"="PID" where "PID” =:1

LIO's DB File
Reads

PIO
Blocks
Read

EXEC
Calls

Read
Time
(sec)

Total
CPU
(sec)

Elapsed
Time
(sec)

Row Migration
Metrics 82,603,529 17,389 50,202 1,270,408 129 883 1134

30

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Row Migration Considerations (3)

• Reference partitioned children may have row migration
enabled even if the parent has row migration disabled.
– This is permitted to allow child rows to move from one parent

row to another, if their partitioning constraint's value changes.

• With row migration disabled, if a child row's partitioning
constraint value is changed, the new parent row must reside
in same partition as the original parent row.
ORA-14402: updating partition key column would cause a partition change

• Values changed in parent table columns referenced by
partitioning constraints, must never orphan any child rows.
ORA-02292: integrity constraint (PCOAD.FK_LNI) violated - child record found

31

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Row Migration Considerations (4)

• Changes to parent rows may cause child rows to migrate
without causing migration in the parent table.
– This can occur when values are modified in the columns of the parent

constraint which are referenced by a child table's partitioning constraint.
– Again, child table rows are never allowed to be orphaned.

• Row movement is disallowed when a partitioning constraint
references a parent table constraint which is enforced by a
non-unique index.
– See ORA-14657 description for details.

• Row movement can be enabled/disabled after table creation.
– Parent table row movement must be disabled before children.
– Likewise, child table row movement must be enabled before parents.

32

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Row Migration – Hidden Deadlock Risks (1)

• Deadlocks occur in Oracle when two (or more) sessions simultaneously
hold locks which other deadlocked sessions are waiting to acquire.

• Every deadlocked session blocks another deadlocked session, while
itself waiting to acquire a lock held by another deadlocked session.

• Row migration within reference partitioning trees incurs a risk of deadlock
from seemingly unrelated actions, possibly on
tables several generations apart.

• Partition migration of a parent row must
acquire locks on all descendent rows
being moved, throughout the
partitioning tree.

• The example on the following page
assumes PARENT table id = 1
corresponds to DESCENDENT id = 1
and PARENT id = 2 corresponds
to DESCENDENT id = 2.

Parent

Child_CChild_BChild_A

Grand
child_A1

Grand
child_A2

Descendent

33

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Row Migration – Hidden Deadlock Risks (2)

Session #1
-- Due to row movement, this UPDATE locks
-- the PARENT row with PARENT_ID = 1 and all
-- corresponding child rows.

UPDATE PARENT SET TRANSACTION_TIME =
TRANSACTION_TIME + 30 WHERE PARENT_ID = 1;

-- Due to row movement, this UPDATE attempts
-- to lock rows related to PARENT_ID = 2. It
-- is blocked by Session #2 from locking the
-- child row with DESC_ID=2.

UPDATE PARENT SET TRANSACTION_TIME =
TRANSACTION_TIME - 25 WHERE PARENT_ID = 2;

-- Upon deadlock detection, Oracle responds
-- by raising error ORA-00060 on Session #1.

UPDATE PARENT SET TRANSACTION_TIME =
 TRANSACTION_TIME - 25 WHERE PARENT_ID = 2;
*
ERROR at line 1:
ORA-00060: deadlock detected while waiting
 for resource

Session #2

-- This UPDATE command locks the DESCENDENT
-- table row with DESC_ID = 2.

UPDATE DESCENDENT SET POSTAL_CODE = 92626 WHERE
DESC_ID = 2;

-- This UPDATE command attempts to lock the
-- DESCENDENT row with DESC_ID = 1, thereby
-- resulting in a deadlock.

UPDATE DESCENDENT SET NAME = 'THOMPSON' WHERE
DESC_ID = 1;

Tim
e

34

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Row Migration – Hidden Deadlock Risks (3)

Session #1
UPDATE PARENT SET TRANSACTION_TIME =
 TRANSACTION_TIME - 25 WHERE PARENT_ID = 2;
*
ERROR at line 1:
ORA-00060: deadlock detected while waiting
 for resource

-- If Session #1 attempts to re-execute
-- the failed query, a deadlock reoccurs.

UPDATE PARENT SET TRANSACTION_TIME =
TRANSACTION_TIME - 25 WHERE PARENT_ID = 2;

Session #2

UPDATE DESCENDENT SET NAME = 'THOMPSON' WHERE
DESC_ID = 1;
*
ERROR at line 1:
ORA-00060: deadlock detected while waiting
 for resource

Tim
e

• ORA-00060 exceptions only roll back the listed SQL statement, not an entire
 transaction. Transactions continue to block until one transaction is rolled back.

• If row movement is enabled while using reference partitions, applications must
 include necessary logic to rollback transactions which receive an ORA-00060 error.

35

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Local Index Considerations (1)

• When using reference partitioning, most child table indexes
should be defined as global, unless there is a compelling reason
for a given index to be defined as local.

• Local indexes are partitioned indexes whose partitions match their
corresponding table partitions.
– Local index entries always reside in the index partition matching the

corresponding row's table partition.

– If the root table's partition key columns are not replicated in a child table,
defining an index on the child table as local means the index will be
partitioned on columns excluded from the child table.

• Local indexes can only be created as UNIQUE, if the partitioning
columns form a subset of the index columns.
– This guarantees that rows with identical index keys always map to the

same partition.

36

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Local Index Considerations (2)

• If a parent's partition key columns are replicated in a child table, but
are not contained in the child’s partitioning constraint, Oracle cannot
infer the “matching columns” represent the same information.

• Consider the tables and indexes on the following page,
used for subsequent examples.
– Function based indexes using constants are used to create both local and

global indexes on the DATE_OF_BIRTH column.
 CREATE INDEX I#PARENT#DOB_GLOBAL ON PARENT (DATE_OF_BIRTH, 'G');

– As an aside, this technique can be used to force “single column” indexes to
include rows with NULL values since the supplied constant is always non-null.

• It has been reported that the numeric value 0 may not always work
properly when used as a constant value in an index.

• Test data includes exactly one parent and one child row for July 31, 1977.

• PARENT and CHILD tables and local indexes each contain 50 partitions.

37

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Local Index Considerations (3)
 CREATE TABLE PARENT (
 PARENT_ID NUMBER NOT NULL,
 PARENT_NAME VARCHAR2 (40) NOT NULL,
 DATE_OF_BIRTH TIMESTAMP NOT NULL,
 CONSTRAINT PK_PARENT PRIMARY KEY (PARENT_ID))
 PARTITION BY RANGE (DATE_OF_BIRTH) (
 PARTITION P_1951 VALUES LESS THAN (TIMESTAMP' 1952-01-01 00:00:00'),
 . . .
 PARTITION P_2000 VALUES LESS THAN (TIMESTAMP' 2001-01-01 00:00:00'));

 CREATE INDEX I#PARENT#DOB_LOCAL ON PARENT (DATE_OF_BIRTH, 'L') LOCAL;
 CREATE INDEX I#PARENT#DOB_GLOBAL ON PARENT (DATE_OF_BIRTH, 'G');

 CREATE TABLE CHILD (
 CHILD_ID NUMBER NOT NULL,
 PID NUMBER NOT NULL,
 CHILD_NAME VARCHAR2 (40) NOT NULL,
 DATE_OF_BIRTH TIMESTAMP NOT NULL,
 CONSTRAINT PK_CHILD PRIMARY KEY (CHILD_ID),
 CONSTRAINT FK_CHILD_TO_PAR FOREIGN KEY (PID) REFERENCES PARENT (PARENT_ID))
 PARTITION BY REFERENCE (FK_CHILD_TO_PAR);

 CREATE INDEX I#CHILD#FK ON CHILD (PID);
 CREATE INDEX I#CHILD#DOB_LOCAL ON CHILD (DATE_OF_BIRTH, 'L') LOCAL;
 CREATE INDEX I#CHILD#DOB_GLOBAL ON CHILD (DATE_OF_BIRTH, 'G');

Partitioning
constraint column

38

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Local Index Considerations (4)
Parent Table Index Details

• In the first example, Oracle uses the local index on the PARENT table, performing
4 “consistent gets” (db block accesses consistent with a given point in time or SCN).

SQL> select * from parent where date_of_birth = '31-JUL-77';

| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT		1	21	3 (0)	00:00:01		
1	PARTITION RANGE SINGLE		1	21	3 (0)	00:00:01	KEY	KEY
2	TABLE ACCESS BY LOCAL INDEX ROWID	PARENT	1	21	3 (0)	00:00:01	KEY	KEY
* 3	INDEX RANGE SCAN	I#PARENT#DOB_LOCAL	1		2 (0)	00:00:01	KEY	KEY

Statistics
--
 4 consistent gets

• When an INDEX hint is used forcing Oracle to use the global index, the query
execution performs 5 consistent gets.

SQL> select /*+ index (parent I#PARENT#DOB_GLOBAL) */ * from parent where date_of_birth = '31-JUL-77';
--
| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	21	4 (0)	00:00:01		
1	TABLE ACCESS BY GLOBAL INDEX ROWID	PARENT	1	21	4 (0)	00:00:01	ROWID	ROWID
* 2	INDEX RANGE SCAN	I#PARENT#DOB_GLOBAL	1		3 (0)	00:00:01		
--
Statistics
--
 5 consistent gets

39

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Local Index Considerations (5)
Child Table Index Details

• When a similar query is executed on the CHILD table, Oracle chooses to use the
global index, performing 5 consistent gets.

SQL> select * from child where date_of_birth = '31-JUL-77';

| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT		1	30	4 (0)	00:00:01		
1	TABLE ACCESS BY GLOBAL INDEX ROWID	CHILD	1	30	4 (0)	00:00:01	ROWID	ROWID
* 2	INDEX RANGE SCAN	I#CHILD#DOB_GLOBAL	1		3 (0)	00:00:01		

Statistics
--
 5 consistent gets

• When a hint is used forcing Oracle to use the local index, the execution plan shows
all 50 index partitions must be probed, performing 102 consistent gets.

SQL> select /*+ index (child I#CHILD#DOB_GLOBAL) */ * from child where date_of_birth = '31-JUL-77';
--
| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	30	52 (0)	00:00:01		
1	PARTITION REFERENCE ALL		1	30	52 (0)	00:00:01	1	50
2	TABLE ACCESS BY LOCAL INDEX ROWID	CHILD	1	30	52 (0)	00:00:01	1	50
* 3	INDEX RANGE SCAN	I#CHILD#DOB_LOCAL	1		51 (0)	00:00:01	1	50
--
Statistics
--
 102 consistent gets

40

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Local Index Considerations (6)

• A local index on a reference partitioned child table may be used if the query
explicitly specifies the partition, in this example performing 5 consistent gets.

SQL> select * from child partition (P_1977) where date_of_birth = '31-JUL-77';
--
| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		2	60	5 (0)	00:00:01		
1	PARTITION REFERENCE SINGLE		2	60	5 (0)	00:00:01	27	27
2	TABLE ACCESS BY LOCAL INDEX ROWID	CHILD	2	60	5 (0)	00:00:01	27	27
* 3	INDEX RANGE SCAN	I#CHILD#DOB_LOCAL	1		3 (0)	00:00:01	27	27
--
Statistics
--
 5 consistent gets

• Oracle’s nomenclature regarding “prefixed” local indexes is misleading with regard
to reference partitioned child tables.

• Local indexes using partitioning constraint column(s) as leading columns display as
prefixed, even though partitioning is based on column(s) excluded from the table.

 CREATE INDEX I#CHILD#FK_LOCAL ON CHILD (PID) LOCAL;
 SQL> select table_name, index_name, partitioning_type, alignment from user_part_indexes;
 TABLE_NAME INDEX_NAME PARTITIONING_TYPE ALIGNMENT
 ------------------------- ------------------------- ----------------- ------------
 CHILD I#CHILD#DOB_LOCAL UNKNOWN NON_PREFIXED
 CHILD I#CHILD#FK UNKNOWN PREFIXED
 PARENT I#PARENT#DOB_LOCAL RANGE PREFIXED

41

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Partition-Wise Joins (1)

• Where applicable, Oracle attempts to use reference
partitioned tables to improve query performance.

• For example, if a child table is joined to its parent, using
the columns in its partitioning constraint, Oracle can always
perform partition-wise joins.
– In these cases, Oracle will only attempt joins between rows in

matching partitions.

– This optimization can extend through multiple generations, if each
reference partitioned table in a query, is joined to its parent using
the partitioning constraint's columns.

– In these cases, partitions pruned in the parent table will also be
pruned in the child tables.

42

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Partition-Wise Joins (2)

• Consider the following reference partitioned tables:
CREATE TABLE PARENT
 PARENT_ID NUMBER NOT NULL,
 PARENT_NAME VARCHAR2 (30) NOT NULL,
 DATE_OF_BIRTH TIMESTAMP NOT NULL,
 CONSTRAINT PK_PARENT PRIMARY KEY (PID))
 PARTITION BY RANGE (DATE_OF_BIRTH) (
 PARTITION P_1901 VALUES LESS THAN (TIMESTAMP' 1902-01-01 00:00:00'),
 . . .
 PARTITION P_2000 VALUES LESS THAN (TIMESTAMP' 2001-01-01 00:00:00'));

CREATE TABLE CHILD (
 CHILD_ID NUMBER NOT NULL,
 PID NUMBER NOT NULL,
 CHILD_NAME VARCHAR2 (30) NOT NULL,
 CONSTRAINT FK_CHILD_TO_PAR FOREIGN KEY (PID) REFERENCES PARENT (PARENT_ID))
 PARTITION BY REFERENCE (FK_CHILD_TO_PAR);

CREATE TABLE GRANDCHILD (
 GRANDCHILD_ID NUMBER NOT NULL,
 CID NUMBER NOT NULL,
 GCHILD_NAME VARCHAR2 (30) NOT NULL,
 CONSTRAINT FK_GCHILD_TO_CHILD FOREIGN KEY (CID) REFERENCES CHILD (CHILD_ID))
 PARTITION BY REFERENCE (FK_GCHILD_TO_CHILD);

43

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Partition-Wise Joins (3)

 SELECT PARENT_NAME, CHILD_NAME, GCHILD_NAME
FROM PARENT P, CHILD C, GRANDCHILD G
WHERE
 P.DATE_OF_BIRTH = TO_DATE ('1955-01-01','YYYY-MM-DD') AND
 P.PARENT_ID = C.PID AND
 C.CHILD_ID = GC.CID;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT		5	630	2 (0)	00:00:01		
1	PARTITION RANGE SINGLE		5	630	2 (0)	00:00:01	5	5
2	NESTED LOOPS		5	630	2 (0)	00:00:01		
3	NESTED LOOPS		3	288	2 (0)	00:00:01		
* 4	TABLE ACCESS FULL	PARENT	1	48	2 (0)	00:00:01	5	5
* 5	TABLE ACCESS FULL	CHILD	3	144	0 (0)	00:00:01	5	5
* 6	TABLE ACCESS FULL	GRANDCHILD	2	60	0 (0)	00:00:01	5	5

Predicate Information (identified by operation id):

 4 - filter("P"."DATE_OF_BIRTH"=TIMESTAMP' 1955-07-01 00:00:00')
 5 - filter("P"."PARENT_ID"="C"."PID")
 6 - filter("C"."CHILD_ID"="GC"."CID")

• Without supporting indexes, Oracle was still able to use a
single partition in each of the three tables, to satisfy this query.

44

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Partition Merges, Splits and Exchanges

• Reference partitioning can significantly reduce performance
during partition merges, splits and exchanges.
– The cascading of row migration across descendent tables is one of

the key factors.
– Eadon [2008] cites tests showing that range and hash partitioned

splits as well as composite partitioned merges can incur a
particularly high performance penalty.

– Merges and splits which do not require row migration do not incur a
performance penalty.

• During partition exchanges, every row in the partition being
exchanged into a reference partitioned table must already
have matching parent rows.

• Testing is needed, to see how each of these operations
performs in a given environment.

45

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Summary (1)

• Reference Partitioning's primary advantages appear to be:
– Simplification of data management when dealing with large volumes of

data having a shared life-cycle.

– Simplification of application code when partitioning multiple tables
together, all sharing the same partitioning key.
• Partition keys no longer need to be replicated across multiple tables.
• Application code no longer needs to keep partition keys synchronized.

– New query optimizations are supported when large tables are joined, but
are not joined on the each table’s partition key.
• This specifically applies to joins between parent and child tables,

based on the child’s partitioning constraint.
• Eadon [2008] provides details regarding many of these optimizations.

46

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Summary (2)

• Reference Partitioning adds new restrictions and limitations
which may make it unsuitable in many environments.
– Omission of indexes supporting partitioning constraints can severely

degrade UPDATE performance across multiple tables in a hierarchy.
• It can also increase the risk of deadlocks involving table level locks.

– The inability to defer partitioning constraints and their parent table
constraints may interfere with application design.

– Row migration of large numbers of rows between partitions may incur
excessive overhead.

– Risk of row migration induced deadlocks will increase the complexity
of application development and maintenance.

– The limited availability to use local indexes may adversely affect
some query’s performance when compared to single table partitioning.

– The inability to drop tables without first dropping all descendent tables
limits the reorganization of partitioned hierarchies to repair mistakes.

47

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Conclusions

• Reference Partitioning has strong advantages and strong limitations,
so its use requires careful planning.

– Reference Partitioning should not simply be used wherever possible.

• Use of Reference Partitioning appears best suited for very large tables
and related tables, whose contents share the same life cycle.

• If applications can tolerate it, the disabling of row movement on
reference partitioned tables should be considered, to reduce the risk of
deadlocks and the substantial overhead incurred by row movement.

– All code accessing tables susceptible to reference partition row movement
must properly handle ORA-00060 deadlock exceptions, rolling back the
corresponding transactions.

• All child table partitioning constraints should be supported by indexes.

• All applicable Oracle patches should be applied. Where available,
Oracle 11.2.0.1.0 or later should be used. See Appendix B.

• Reference Partitioning should be carefully tested before use.
48

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Q & A

49

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

References

Eadon, G., et al. 2008. Supporting Table Partitioning By Reference in Oracle.
Vancouver, BC. Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, pages 1111–1122. ISBN 978-1-60558-103-3.

Millsap, C.; Holt, J. 2003. Optimizing Oracle Performance.
Sebastopol CA: O’Reilly. ISBN 059600527X.

Millsap, C. 2009. MR Tools Documentation. Method-R Corporation.
http://method-r.com/component/content/article/61-documentation/124-mrlsdoc
http://method-r.com/component/content/article/61-documentation/125-mrnldoc
http://method-r.com/component/content/article/61-documentation/126-mrskewdoc

Oracle Corporation. 2010. Interpreting Raw SQL_TRACE and
DBMS_SUPPORT.START_TRACE Output - Note 39817.1.

Oracle Corporation. 2010. Oracle Database VLDB and Partitioning Guide
11g Release 2 (11.2). Part number E10837-04.

Poder, T., 2010. Session Snapper Documentation. E2SN Company.
http://tech.e2sn.com/oracle-scripts-and-tools/session-snapper

50

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Appendix A:
Oracle 11g

Recommended Patches

51

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Appendix A:
Recommended Patches for Reference Partitioning

• If possible Oracle 11.2.0.1.0 or later should be used
whenever reference partitioning is used.
– Patch #8477142 (described below) is the only patch related to

reference partitioning which I know about, required for 11.2.0.1.0.

• If 11.1.x is used, the following patches are recommended:
– 7722575 Excessively slow Data Pump export “Estimate” step for

partitioned tables. Only patched on Linux.
• Bug #8845859 for Solaris has no patch and is not fixed until 12.1.

A potential workaround is to specify VERSION=10.2.0.3 during export.
– 7654925 Fixes 11.1 problems with very slow inserts to reference

partitioned child tables. Fixed in 11.2.
– 8477142 Fixes widespread 11.1 and 11.2 Data Pump import errors

related to reference partitioned tables. Fixed in 12.1.
– 9364608 Solaris only; Other patch numbers apply on other platforms.

Very slow statistics collection for partitioned tables. Fixed in 11.2.
52

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Appendix A:
Recommended Patches for 10046 SQL Tracing

• Oracle 11.1.0.7.0 introduced 2 bugs severely corrupting the
tim=, ela= and e= timing values inside Oracle trace files.
– Patch 7522002 fixes a generic bug on all platforms for 11.1.0.7.0 & 7.1.

Later versions of 11.1.0.7.x may remove this patch and resume
erroneous behavior.

– Patch 8342329 fixes a second bug on HP/UX, Solaris and AIX. This
patch is only available on 11.1.0.7.0. On Solaris only, patch 9415425
has been released for 11.1.0.7.1, merging patches 7522002 and
8342329.

• Oracle 11.2 fixes both bugs.
– 11.2 now uses microseconds for timer increments on all platforms.

Prior releases from 9.0 through 11.1 used nanoseconds/1024 on
Solaris, AIX, HP/UX and some Linux versions.

53

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Appendix B:
Tools used for 10046
Trace File Analysis

54

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Appendix B:
Tools Used for Trace File Analysis

• All tests in this presentation were conducted using Oracle
11.1.0.7.0, while collecting Oracle's 10046 SQL Trace Data.

• The primary tools I use for 10046 trace file analysis are:
– MR Tools (mrls, mrskew and mrnl) from Method-R Corporation

For details please see: http://www.method-r.com/software/mrtools
– Method-R Profiler (also sold as the Hotsos Profiler).

For details please see: http://www.method-r.com/software/profiler
– Personal tools I have written in PL/SQL and Perl.
– A text editor capable of quickly opening and manipulating very large

files. I prefer TextPad under MS Windows & BBEdit on the Macintosh.
– I also strongly recommend Tanel Poder’s Session Snapper,

not for 10046 analysis but as a powerful PL/SQL tool supporting fast,
flexible first round performance troubleshooting.
http://tech.e2sn.com/oracle-scripts-and-tools/session-snapper

55

Copyright © 2010 Thales-Raytheon Systems Co. All rights reserved.

Appendix B:
MR Tools – mrskew Example

• This command line tool allows one to extract a wide variety of summarized
details regarding the contents and skew within Oracle 10046 trace files.
– Task: Determine the average retrieval time from disk, which an Oracle session

is experiencing, during the time period covered by its trace file.
– Details are found in "db file scattered read" & "db file sequential read" events.

 WAIT #3: nam='db file scattered read' ela=9946 file#=80 block#=72659 blocks=2 obj#=25939 tim=672349123
 WAIT #3: nam='db file sequential read' ela=267 file#=80 block#=72624 blocks=1 obj#=25939 tim=672929350

 $ mrskew --name='db.*read' CRIEFF_ora_17077.trc

 Matched event names:
 db file scattered read
 db file sequential read
 RANGE {min <= e < max} DURATION CALLS MEAN MIN MAX
 0.000000 0.000001 0.000000 0.0% 0
 0.000001 0.000010 0.000000 0.0% 0
 0.000010 0.000100 0.000000 0.0% 0
 0.000100 0.001000 0.356379 8.1% 1014 0.000351 0.000103 0.000973
 0.001000 0.010000 2.700134 61.7% 469 0.005757 0.001000 0.009983
 0.010000 0.100000 1.189528 27.2% 79 0.015057 0.010004 0.068535
 0.100000 1.000000 0.130391 3.0% 1 0.130391 0.130391 0.130391
 1.000000 10.000000 0.000000 0.0% 0
 10.000000 100.000000 0.000000 0.0% 0
 100.000000 1000.000000 0.000000 0.0% 0
 1000.000000 Infinity 0.000000 0.0% 0
 TOTAL (4) 4.376432 100.0% 1563 0.002800 0.000103 0.130391

Answer = 2.8 milliseconds
56

