Database Track

Your tuning arsenal: AWR, ADDM, ASH, Metrics and Advisors

John Kanagaraj, DB Soft Inc.
jntroduction

Oracle Database 10g brought in a slew of tuning and performance related tools and indeed a new way of dealing with performance issues. Even though 10g has been around for a while, many DBAs haven’t really used many of the new features, mostly because they are not well known or understood. In this Expert session, we will look past the slick demos of the new tuning and performance related tools and go “under the hood”. Using this knowledge, we will bypass the GUI and look at the views and counters that matter and quickly understand what they are saying. Tools covered include AWR, ADDM, ASH, Metrics, Tuning Advisors and their related views. Much of information about Oracle Database 10g presented in this paper has been adapted from my book and I acknowledge that with gratitude to my publisher - SAMS (Pearson).

Performance Management in Oracle Database 10g

Oracle Database 10g has introduced major changes in many areas, but I believe the most significant improvement has been in the area of performance monitoring and tuning. For this reason, we may need to unlearn some of our old tuning methodologies and understand and embrace the new. The main thrust in this flagship version of the database has been to automate the traditional database administrative functions, support enterprise grid computing, and ultimately reduce the TCO (Total Cost of Ownership) of running a scalable and highly available database. Many architectural changes have been made to automatically improve memory handling, resource management, storage provisioning, SQL tuning, data movement, recovery speed, and globalization. Thus, “automation” is the main philosophy in this RDBMS version and this has been fully implemented in the performance management component. Although the Oracle RDBMS has never suffered from non-availability of detailed performance statistics, users have lacked both a consistent method of easily exposing and using these performance statistics. They have also lacked easy to use in-built tools that analyzed these statistics and provided sane advice. Even though the aptly named Oracle Wait Interface has existed since Oracle 7.0 (released in the early 90’s!), only after the turn of the century has it become popular as a method used for tuning. Since then, however, a number of Oracle-provided and third party–developed tools have tried to fill the gaps and attempted to distill these statistics into meaningful information that can be used to tune the database.

The Oracle Wait Interface and Wait events is a well understood method for identifying database performance issues by viewing, monitoring, and analyzing Wait events, with the purpose of reducing or removing the waiting portion of an Oracle process. An active Oracle process moves through many stages in its life. At any point of time, it is in any one of the following states:

· Starting up or shutting down

· Executing on the CPU

· Waiting in the CPU queue to execute

· Waiting for an event external to the process to complete

It is this last component, i.e. waiting for external event completion that the Oracle Wait Interface describes. The Oracle kernel can expose the event for which a process is waiting at a point in time, and thus the term Wait event. These events include waiting for disk or network I/O to complete, waiting for a shared resource such as a lock or latch that is being used by another process to be released, and so on. Each of these Wait events is named, and the total time waited and number of times the process waited on that particular event is tracked and exposed via a variety of internal V$ views. Understanding and quantifying these Wait events thus becomes key to performance analysis and remediation. Oracle Database 10g continues to build on this interface both by exposing a great deal of this data in an easy format as well as by adding interpretation to this data. In Oracle Database 10g, the Wait events are classified, which helps a performance analyst to quickly assess the significance of various events without knowing lower-level details.
The number of Wait events has also grown significantly in Oracle Database 10g. Essentially, it means that more and more sections of the newer kernel code have been instrumented to record the event as the session passes through it. In fact, while Oracle Version 7.3.4 had about 100 Wait events, Oracle 8i recorded over 200 such events and Oracle 9i doubled that number to about 400. Ultimately, Oracle Database 10g Release 1 records 808 Wait events and Oracle Database 10g records 874 different wait events! This increase also means that you will now have to understand a lot more wait events. Conveniently, however, Oracle Database 10g has classified these events (using the V$SYSTEM_WAIT_CLASS and the WAIT_CLASS column in certain views) so we can easily classify and thus understand them. Check the view V$EVENT_NAME to verify this – you can also use this view to determine the meaning of the P1, P2 and P3 parameters. Listing 1 below shows how the familiar V$SYSTEM_EVENT view can now be classified by the type of wait. The second SQL lists some of the events grouped into the Concurrency and System I/O wait classes.
SQL> select wait_class, sum(time_waited)

 2 from v$system_event

 3 group by wait_class

 4 order by sum(time_waited) desc;

WAIT_CLASS SUM(TIME_WAITED)

------------------------------ ----------------

Idle 1167524793

User I/O 50076396

Application 23244155

System I/O 544713

Concurrency 462203

Network 44112

Other 11973

Commit 11021

Configuration 5736
SQL> select wait_class, name

 2 from v$event_name

 3 where wait_class in ('System I/O','Concurrency')

 4 order by wait_class, name;

WAIT_CLASS NAME

------------------ --

Concurrency buffer busy waits

Concurrency enq: TX - index contention

Concurrency latch: cache buffers chains

Concurrency latch: library cache

Concurrency os thread startup

System I/O LGWR sequential i/o

System I/O control file parallel write

System I/O recovery read
Listing 1 – Wait class information

Time Model

Before we move on, please note that a discussion of tuning is incomplete if CPU usage is not considered when talking about tuning. The Wait Interface does not deal with this issue, but as we will see later in this paper that Oracle Database 10g addresses this component effectively. In short “Tuning is not only just about the Wait Interface!” To cater to this aspect, Oracle Database 10g has introduced what is called the “Time Model”. With this model, the time component of every operation is stored in a bucket, using which we can identify how the time distribution looks like at either the database level or at the session level. Examples of these buckets are: "DB CPU", "DB Time", "background elapsed time", "sql execute elapsed time", etc. This is very clearly exposed using the V$SYS_TIME_MODEL at the Database level and the V$SESS_TIME_MODEL at the Session level. In fact, this time component is considered so crucial that the Tuning Advisors considers the Time component as the currency unit for comparison between, say two different approaches to executing the same SQL statement. You can now determine CPU time spent in various subcomponents (class of consumption) as well as time spent waiting for various classes of events.
SQL> select stat_name, value from v$sys_time_model

 2 where value > 0;

STAT_NAME VALUE

--- --------------

DB time 893170091346

DB CPU 176244910473

background elapsed time 13782131027

background cpu time 4572399582

sequence load elapsed time 10215471781

parse time elapsed 4524012412

hard parse elapsed time 3657262901

sql execute elapsed time 893293010655

connection management call elapsed time 328536127

failed parse elapsed time 103540062

hard parse (sharing criteria) elapsed time 365217641

hard parse (bind mismatch) elapsed time 5923514

PL/SQL execution elapsed time 5554924592

PL/SQL compilation elapsed time 333815896

repeated bind elapsed time 14768010
Listing 2 – Time Model at the System level
Note that some of these values are roll-ups of other values. For example, the background cpu time is part of background elapsed time and can never be larger than the former. Similarly parse time elapsed is a rollup of the other parse components. The DB Time is the most valuable of these and is the total time spent by the foreground sessions performing useful work. In other words, it is a combination of CPU spent parsing and executing SQL, PL/SQL, and Java, as well as other overheads such as process setup and management. The relationships between the statistics form two trees in which all the time reported by a child in the tree is contained within the parent in the tree. The following are the relationship trees; the number is the level in the given tree.

1) background elapsed time

 2) background cpu time

1) DB time

 2) DB CPU

 2) connection management call elapsed time

 2) sequence load elapsed time

 2) sql execute elapsed time

 2) parse time elapsed

 3) hard parse elapsed time

 4) hard parse (sharing criteria) elapsed time

 5) hard parse (bind mismatch) elapsed time

 3) failed parse elapsed time

 4) failed parse (out of shared memory) elapsed time

 2) PL/SQL execution elapsed time

 2) inbound PL/SQL rpc elapsed time

 2) PL/SQL compilation elapsed time

 2) Java execution elapsed time

At the session level, you can now use the equivalent V$SESS_TIME_MODEL view to quickly determine which component introduced the most resource consumption for that session. Earlier, one had to guess these value by looking at various undocumented statistics in V$SYSSTAT and V$SESSTAT views. Please note that this is entirely accurate as per Metalink Note: 356885.1 (''Db time'' Statistics Value is not Equal to the Sum of Children Statistic Times), but this gives us a very fair idea.
(As a tidbit, have a look at the text of the “Top 5” section of STATSPACK. Oracle has recognized the need to consider CPU time and has renamed this section from “Top 5 Wait Events” (8.1.x to 9.0.1) to “Top 5 Timed Events” and included the CPU time derived from V$SYSSTAT into the timing equation)

Front page news

The Enterprise Manager (EM) Database Control front page is a great place to start your performance and problem findings and analysis. This page quickly summarizes all the issues into neat boxes, message regions and mini-graphs to grab your attention just as the headline news in a newspaper does. See Figure 1 for a highlighted version of this front page. You can immediately notice that some sessions are waiting, others are performing system I/O and yet others are on the CPU in the “Active Sessions” region. The Diagnostics summary and Space summary shows some findings and clicking on them will lead to the appropriate advisors (as we will see later in this paper). The Database maintains an Alert area that can quickly also point you to problems that have occurred in the immediate past.

[image: image1.jpg]@-b-&

% = @A . |l hetpiffussceap0it.hds.com:1158femjconsolefdatabasefinstance]sitemapPtarqet=GWE | ¥ | [Google:]| -8 x
[} showpoe || Ci oracte Enterprise Manager (s¥sT... @3 | [} contents =
General Host CPU Active Sessions SQL Response Time
A Latest collection is empty.
Shutdown)
100% Edit Baseline)
Status Up 75
Up Since Feh 19, 2007 10:12:25 AM PST o Gther
Instance Name GWEBOZU GWEBIU
Version 10.20.1.0 2 "
Host ussccapDit
Listener GWEBD2U ussccap01t o
View All Properties Load 092 Paging 0.00 Maximum CPU 4

ADDM Findings

All Palicy Violations € 13
Alert Log Feb 22, 2007 :53.33 PM

4, 2007 3:00:12 PM

V Alerts

Space Summary

Prablem Tablespaces /8 1
Segment Advisor
Recommendations D

Dump Area Used (%) 88

Category [All ~](c0) Critical 0 Warming D8

High Availability
52 Instance Recovery Time (sec) 34

Last Backup
Flashback Logging

nfa
Disahled

'+ [Cateqory

[Message

Name

[Blert Triggered |

ser Audit

udited User

ser ed on from ussceapd1t

User Block Blocking Session Count

Response
Waits by Wait Class

User Logan Time (msec)

Database Time Spent Waiting
(%)

Session 142 is blocking 2 other sessions

User logon time is 1016852 msecs.
“Database Time Spent Waiting (%)" is at 100 for event class

eb 24,2007 2:11:12
EM
b 22,2007 9.01.05
M

b 1,2007 2:49:50 AM
b 1,2007 2:38:15 AM

P

“Tattesp “TatteSpTE-Sp o
) Database Job Status Broken Job Count
) Database Job Status Failed Job Count

Invalid Objects by Owner's Invalid Object Count

1 job(s) are broken
1 job(s) have failed.
8 abject(s) are invalid in the HIFIRE schema.

fan 31,2007 3:14:16
AM

Jan 17,2007 8:27:33
AM
Jan 16,2007 9:22:33
PM

Nov 23, 2006 4:37:38

Figure 1 – Front page of the EM Database Control with performance and advisor related regions highlighted

An Overview of relevant features

You will need to have some understanding of these tuning tools in order to be able to use them effectively. So, let us jump into the details of these components.
AWR – The Performance Data Warehouse

The Automatic Workload Repository or AWR for short is the performance data warehouse of Oracle Database 10g. All versions of the Oracle Database produce a vast amount of performance data. In Oracle Database 10g however, this is taken to a whole new level. The Automatic Workload Repository (AWR) is a new infrastructure component that is at the heart of the collection, storage and processing of this data. This data forms the basis for most of the problem detection and self-tuning mechanisms that Oracle Database 10g provides. In fact, the performance-alert mechanisms rely on this data, as do many of the performance advisors. The Automatic Database Diagnostic Monitor (ADDM) uses this data as well, performing scheduled analysis of the data collected by AWR. AWR consists of two components: in-memory performance statistics, accessible through V$ views, and snapshots of these V$ views “persisted” in the database that record the historical values. AWR consists of the following collections:

· Active Session History (ASH)

· High-load SQL statements

· Time model statistics at the database level as well as at the session level for CPU usage and wait classifications

· Object statistics that record usage as well as access counts for segments such as tables, indexes, and other database objects

· Snapshots of traditional V$SESSTAT, V$SYSSTAT, V$SYSTEM_EVENT, and V$SESSION_EVENT data

Out of the box, AWR data is automatically collected every hour on the hour. The Oracle kernel allocates a small but distinct portion of the System Global Area (SGA) to buffers that are dedicated to holding session history and other AWR-related information. These in-memory buffers are updated by the MMNL and MMON background processes via sampling of session information and counters. The Memory Monitor Light (MMNL) process, new to Oracle Database 10g, performs tasks such as session history capture and metrics computation and stores this information in these buffers. It also persists the statistics in these buffers to disk as needed in the form of AWR tables. The Memory Monitor (MMON) process performs various background tasks, such as issuing alerts whenever a given metric violates its threshold value and taking snapshots by spawning additional process (MMON slaves), among others. Together, they are responsible for the statistics, alerts, and other information maintained by AWR. These statistics are made permanent in the AWR, which consists of a number of tables. By default, these background jobs automatically generate snapshots of the performance data once every hour and flush the statistics to the workload repository. The Automatic Database Diagnostic Monitor (ADDM) then kicks in to analyze the data from the immediately prior and current snapshots, and to highlight any performance issues or problems. You can perform all this manually as well, but this will occur automatically out of the box. Ultimately, because SQL executing in a user or background session produces database work and hence load, AWR works to compare the difference between snapshots to determine which SQL statements should be captured based on their effect on the system load. This reduces the number of SQL statements that need to be captured over time, while still capturing the essential ones. Thus, AWR serves as a performance warehouse for the Oracle Database 10g, generating, maintaining, and reporting these performance statistics. AWR purges its own data in a scheduled manner, thus self managing itself.

Similarity to STATSPACK

In many ways, AWR resembles and traces its roots from its well known predecessor – STATSPACK. The data that AWR collects is very similar to that collected by STATSPACK and the AWR report looks very similar if not exactly the same as a STATPACK report. The concepts are similar: Capture snapshots of required internal V$ views, store them, and report them. There are some major differences between AWR and STATSPACK, however that we will need to discuss so we can lay the groundwork for what we can and cannot bring over to the lower versions where STATSPACK is available as the framework for performance data collection, storage and reporting.

· Both STATSPACK and AWR snapshot selected V$ performance views that expose current performance data and store it in clear-text in similarly named tables. Both types of snapshots are uniquely identified via the SNAP_ID column. For example, the tables STAT$SYSTEM_EVENT and WRH$_SYSTEM_EVENT store exactly the same data – snapshots of V$SYSTEM_EVENT – in STATSPACK (PERFSTAT schema) and AWR respectively.

· Both STATSPACK and AWR produce similar reports using packaged SQL*Plus scripts. STATSPACK uses spreport.sql, while AWR uses a number of AWR-specific scripts. As we said before, the headings and data reported by both are very similar if not exactly the same.

· While STATSPACK needs to be installed manually and managed carefully, AWR is installed, configured, and managed by default in a standardized manner. In fact, AWR is switched on by default to collect snapshots once an hour, with purging built in automatically.

· STATSPACK snapshots impose a reasonable load during collection. However, AWR collections occur continually and are offloaded to selected background processes, allowing for smoother, less perceptible and less disruptive progress.

· STATSPACK analysis is complex and needs a skilled eye and an adequate level of experience to detect problems. AWR, along with ADDM, runs continually, generates alerts, and performs analysis automatically.

· STATSPACK is not accessible via a GUI such as EM for viewing or management, whereas AWR is accessible both via the EM GUI as well as via SQL and PL/SQL for viewing and management.

· The way high-impact or high-load SQL is captured in AWR is quite different from STATSPACK, and this is one of major differences, and indeed highlights a weakness in STATSPACK. While STATSPACK scans V$SQL for high-load SQL based on a certain set of defaulted lower limits, such as on number of logical and physical I/Os per stored SQL statement, AWR recognizes high-load SQL as it occurs. This enables accurate capture of the right SQL data as it occurs, rather than collecting high-load SQL from V$SQL, which may capture SQL that occurred prior to, and thus outside of, the snapshot period.

· STATSPACK does not store session level information, while session history for active sessions (which is exposed via ASH) is also stored in AWR tables. This is another deficiency in STATSPACK

· AWR data includes data from the "Time and Wait" models. STATSPACK does not include this data since the lower versions do not classify performance data using this model.

· STATSPACK data is stored in the PERFSTAT schema in any designated tablespace, while AWR data is stored in the SYS schema in the new SYSAUX tablespace.

Since both STATSPACK and AWR function somewhat similarly, it is possible for us to adapt some part of the workings of AWR using STATSPACK data. Understanding this similarity will be of prime importance to you if you do not have the license to use AWR – the license to use these tools being packaged as part of Oracle Management Packs which in turn can be purchased only with the Enterprise Edition. In fact, you may be surprised to know that STATSPACK is still well and alive in Oracle Database 10g and you can choose to use it if required.
AWR Storage and Reporting

All the AWR objects (tables and their indexes) start with one of the following prefixes:

· WRH$ tables, which store workload repository history. Some of these tables are range-partitioned in order to facilitate storage management

· WRI$ tables, which store workload repository internal details.

· WRM$ tables, which store workload repository metadata.

All these tables reside in the SYSAUX tablespace. In fact, in Oracle Database 10g, there are more than 160 of these tables, and many of the larger ones are range-partitioned by DB_ID and SNAP_ID along with their indexes, which help during purging of older snapshot information. The table names have suffixes that are the same or similar to their equivalents in STATSPACK’s PERFSTAT schema. For example, the statistical contents and use of the STATS$FILESTATXS table of STATSPACK and the WRH$FILESTATXS table of AWR are the same; they store snapshot detail information from V$FILESTAT. Hence, understanding their use is simpler if you already know of their use in STATSPACK. A number of views can access some of these tables. Generally, these views start with the DBA_HIST prefix. For example, the DBA_HIST_ACTIVE_SESSION_HISTORY view derives its data mainly from WRH$_ACTIVE_SESSION_HISTORY joining WRM$_SNAPSHOT and WRH$_EVENT_NAME as required. The DBA_HIST_SEG_STAT view displays snapshot-wise object statistics including the number of logical and physical reads and writes, ITL waits, and so on. The current-at-snapshot value as well as the delta difference for the snapshot period is displayed as well.
By default, AWR data is stored only for a week, and older data purged automatically once a day. (In case the SYSAUX tablespace tends towards running out of free space, an emergency purge is performed). With snapshots taken every hour, this data can grow quickly. You can see space used using the SQL below.
SQL> select occupant_name, occupant_desc, space_usage_kbytes

 2 from v$sysaux_occupants

 3 where occupant_name like 'SM%' or occupant_name like 'EM%';
Name

 Description Used KB

 --- -------

SM/AWR

 Server Manageability - Automatic Workload Repository 200192

SM/ADVISOR

 Server Manageability - Advisor Framework 39104

SM/OPTSTAT

 Server Manageability - Optimizer Statistics History 102912

SM/OTHER

 Server Manageability - Other Components 9472

EM

 Enterprise Manager Repository

 9472

EM_MONITORING_USER Server Manageability - Other Components 9472

Listing 1 - AWR Data from the V$SYSAUX_OCCUPANTS View
You can change the frequency, retention period and other parameters for AWR using EM Screens or the SQL API using the DBMS_WORKLOAD_REPOSITORY package (MODIFY_SNAPSHOT_SETTINGS in this case).
AWR Baselines

An AWR baseline is a collection of snapshots usually taken over a representative time period. For example, you might record a baseline where the system is performing well at peak load. You can then use this baseline as a way of comparing statistics captured during a period of bad performance. This baseline comparison can help pinpoint certain statistics that have changed significantly as compared to the period when the database was performing well. You can then analyze the statistics that differ vastly to determine the cause of the problem. Baselines can also be used with SQL tuning sets. You should, however, carefully consider the time period you choose as a baseline. This period should be a good representation of the normal, expected load on the system. In the future, you can compare these baselines with snapshots captured during periods of poor performance for comparison purposes. Note that the snapshots that are linked to baselines are never purged from the AWR repository even if they are past the purge period. For this reason, baselines are also known as preserved snapshot sets. Current baselines can be viewed using the DBA_HIST_BASELINE view or the WRM$_BASELINE view at a lower level.
Utilizing the AWR Snapshots

AWR Snapshots can be accessed from the Enterprise Manager Database Control or from SQL using the DBMS_WORKLOAD_REPOSITORY package. Figure 2 below shows a set of AWR Snapshots – accessed via the ‘Advisor Central -> ADDM’ link. You can use this to look at AWR snapshots and choose a pair of them to run an ADDM report on.
[image: image2.jpg]2% e

ORACLE Enterprise Manager 10g Heb Lot

Database Control ﬁ(zﬁ‘ﬁa

Database Insiance: GWEBD2U > Adsisor Central > Run ADDM
Run ADDM

Logged in As SYSTEM

(Cance) (0K)
@ Run ADDM to analyze current instance performance

Create a new AWR sniapshot and run ADDM on the new and the previous snapshat. You must have EXECUTE priviege on DEMS_WORKLOAD_REPOSITORY to
complete this

€ Run ADDM to analyze past instance performance

ADDM analysis requires a pair of AWR snapshiots to specify the analysis period. Specify the analysis period by selecting the Period Start Time or the Period End Time
option and clicking on an icon below the graph

@ Period Start Time & Feb 22, 2007 7:00:45 PM PST € Period End Time @ Feb 22, 2007 8:00:57 PM PST

§ 4978
o Zoom
0.000 W cPu

f8 & & P g S S

@TIP For an explanation of the icons and symbols used in this page, see the loon Key

o)) (@0

Database | Sstup | Prefetences | Help | Logout
Copyriht @198, 2005, Oracle. Al rights reserved

bt Oracle Enterpise Msnager 103 Databaze Contol

A u- X0 | & -2

Figure 2 – AWR Snapshots highlighted on an ADDM screen

The first highlight shows an area of interest that you might consider being active and want to run an ADDM report on. The second highlight shows a set of AWR snapshots, the last two being the ones that will run if you want to generate an ADDM report by default.
SQL Access to AWR

A number of AWR related scripts can be found in the $ORACLE_HOME/rdbms/admin directory. All of them use the DBMS_WORKLOAD_REPOSITORY package which is the accepted API into the workload repertory. The script awrrpt.sql calls the awrrpti.sql which in turn can produce HTML or plain text report. You will find that this report is very similar to the STATSPACK report. The awrddrpt.sql script produces an AWR Diff report that can compare two pairs of snapshots from different periods. You can use this to compare the behavior of the Database at two different times. The diff report is able to provide a Configuration comparison section in which various parameters are diffed, as well as the full range of the various events and statistics. Even the SQL statements that have the same SQL_ID are compared along with information such as their execution statistics. This diff report indicates whether there were multiple plans (i.e. a possible change in execution plans) which can help you in determining SQL statements that could have ‘gone south’ in the intervening period between the snapshot pairs. The awrextr.sql frontends a DataPump dump of selected AWR snapshots for later retrieval using the awrload.sql script. The ‘awrinfo.sql’ generates information such as space usage by ASH and AWR components and other SYSAUX occupants. The ‘awrsqrpt.sql’ lists the differences in execution statistics for a particular SQL statement across the selected snapshots. You can use this to as a drill down report to look at the behavior of a particular SQL possibly identified in the Diff report over that selected period. While the DBMS_WORKLOAD_REPOSITORY package is well documented, these other scripts are not so well documented. However, they all use inbuilt functions such as the ones listed below in Table 1, the details of which of course is not documented:
	Subprogram of DBMS_WORKLOAD_REPOSITORY

	Description

	ASH_REPORT_HTML Function

	Displays the ASH report in HTML

	ASH_REPORT_TEXT Function

	Displays the ASH report in text

	AWR_DIFF_REPORT_HTML Function

	Displays the AWR Diff

	Diff report in HTML
	

	AWR_DIFF_REPORT_TEXT Function

	Displays the AWR Diff

	Diff report in text
	

	AWR_REPORT_HTML Function

	Displays the AWR report in HTML

	AWR_REPORT_TEXT Function

	Displays the AWR report in text

	AWR_SQL_REPORT_HTML Function

	Displays the AWR SQL Report in HTML format

	AWR_SQL_REPORT_TEXT Function

	Displays the AWR SQL Report in text format

	CREATE_BASELINE Function and Procedure

	Creates a single baseline

	CREATE_SNAPSHOT Function and Procedure

	Creates a manual snapshot immediately

	DROP_BASELINE Procedure

	Drops a range of snapshots

	DROP_SNAPSHOT_RANGE Procedure

	Activates service

	MODIFY_SNAPSHOT_SETTINGS Procedure
	Modifies the snapshot settings.

Table -1 List of AWR API functions and procedures
Overheads for AWR

Note that persisting of AWR information involves inserts to tables, while purging results in DELETE operations. These operations result in some overhead, albeit minimal and offloaded to the MMNL and MMON background processes. As well, they will generate redo and undo information, whose rate depends on the rate of the collection. If your databases are in ARCHIVELOG mode, you will notice a minimal but constant stream of archive-log generation even if there is no activity on the database. Under certain circumstances, it is possible that you’ll encounter library cache contention due to MMON slave processes. This is due to a bug that has been corrected in later patchsets. Please refer to MetaLink Note #296765.1 for details.

ASH - What happened to the sessions?!

Simply stated, ASH is the new Oracle database 10g performance component that exposes a historical view of the active sessions. It samples the session states of all active sessions in memory once every second and exposes a history of their states, include wait event information. The reasoning behind the provisioning of this very interesting data is to allow the performance analyst to perform on-the-spot analysis of a current session as well as to be able to look at the overall breakdown of session-related information in the short term. In the short term, this is exposed using the V$ACTIVE_SESSION_HISTORY. This view is presented from a circular buffer in memory and the data within is thus transient. Every 10th sample (by default) is "persisted" in the WRH$_ACTIVE_SESSION_HISTORY table and this data is linked to the SNAP_ID value of the current AWR snapshot. In effect, if one is able to detect a performance issue using two snapshots, it is now possible to look at the sessions that contributed to this issue in an after-the-fact manner, which is indeed powerful. Thus, using ASH data, you can perform both on-the-spot analysis as well as look back into history and perform retroactive analysis because the ASH data is tied to a snapshot and a period. The advantage of immediate analysis is that you can obtain a larger number of samples directly from the memory buffer, while the data is coarser when viewed later using the persisted copy on disk. Keep in mind that although ASH is part of and is linked to AWR, and hence suffers from the same downsides.

The session-state information for active sessions is collected by a very low-overhead direct memory sampling of the session-state information that is held in the SGA for all sessions. The display of session-state information is not exactly new, however. Way back, Oracle 7 introduced the V$SESION and V$SESSION_WAIT views, which could be combined to provide many details of the state of a particular session from a snapshot of it. The information, of course, was current at the time these views were queried, and this information was not stored anywhere for later analysis. Sampling the SGA for performance statistics is also not a new idea, although this is the first time such sampling is provided via the Oracle Database 10g kernel itself. The idea of sampling the SGA directly (Direct Memory Access, or DMA) probably evolved from a program named m2, which was the first program written by an Oracle Support analyst to determine V$SESSION_WAIT details in the early days of Oracle Version 7. Although it was never released or made available to Oracle users, m2 was probably the spark that ignited the concept of ASH. Also look at Kyle Hailey’s scripts at http://oraperf.sourceforge.net/ which includes source code and instructions for creating a Direct Memory Access program.
ASH samples session-state information for active sessions once every second and exposes it via a number of views, the details of which you will see later in this section. ASH records these details in a circular memory buffer for quick access. CPU overheads associated with ASH have been claimed to be as low as 0.1% of 1 CPU. This sampling and recording is performed by the AWR-related processes, namely MMNL and MMON. This activity occurs without any latching and serialization, which results in the relatively low overhead for such collections at the expense of some accuracy. The persisted session-state history data which consists of every 10th sample is both time-stamped and associated with the SNAP_ID of the corresponding AWR snapshot for that period. In fact, as noted before, ASH data is also collected via the same processes and stored within the same repository as AWR snapshots.

ASH data is used in AWR snapshot and other collections as well. For example, we mentioned previously that AWR tracks and collects high-load SQL that occurs within the snapshot period rather than trolling through V$SQL for previously recorded SQL. It does this based on ASH data for SQL from sessions that either caused a majority of the waits during the period or consumed the most CPU. Other information collected directly from ASH includes “hot” files and segments (from P1 and P2 values) as well as database metrics. ASH data can be viewed both directly using the views as well as indirectly via EM Database Control. The base view V$ACTIVE_SESSION_HISTORY exposes the contents of the ASH buffers. This view holds all the relevant details that both V$SESSION and V$SESSION_WAIT hold, along with some additional columns. Note that the column names for some of the common columns have changed. For example, the SID and SERIAL# columns are now known as SESSION_ID and SESSION_SERIAL# respectively.
The SESSION_STATE column indicates the session state—that is, whether the session is currently WAITING or ON CPU. This depends on the WAIT_TIME column. If it is 0, then the state is WAITING; if not, it is ON CPU. This column is actually a better representation of WAIT_TIME. Now this is a key sentence: If you see a nonblocking event such as db file sequential read, and the state is ON CPU, then it means that the process actually completed the last I/O and is currently not waiting. The event that is displayed is actually the last recorded Wait. If the SESSION_STATE column is “WAITING”, then the EVENT column exposes the event for which the session was waiting at the time of sampling. If SESSION_STATE = ON CPU, then it is the event for which the session last waited before being sampled. EVENT_ID and EVENT# are also shown in this view and correspond to their equivalents in V$SESSION and V$SESSION_WAIT.
Accessing the ASH

The V$ACTIVE_SESSION_HISTORY can be sliced and diced to perform all kinds of analysis as this is a simple view. For example, if a user reports intermittent slowdown of a session in the past few minutes, you can use this view to quickly determine the issue. (Assume that we have determined the user session’s SID and Serial# to be 113 and 333 respectively).
SQL> select event, seq#, p1, p2, p3, blocking_session

 2 from v$active_session_history

 3 where session_id = 113 and session_serial# = 333;

EVENT Seq# P1 P2 P3 BlkSess
---------------------------- ------- ------------ ------------ ------------ -------
db file sequential read 34786 29 182279 1 0

db file scattered read 34870 19 103899 8 0

db file sequential read 34954 29 183370 1 0

db file scattered read 35040 19 102299 8 0

enq: TX - row lock contention 35119 1415053318 524322 11255 142
db file scattered read 35204 19 99643 8 0

db file scattered read 35207 19 102371 8 0

enq: TX - row lock contention 35220 1415053318 524322 11255 142
db file scattered read 35232 19 100019 8 0

enq: TX - row lock contention 35243 1415053318 524322 11255 142
db file scattered read 35256 19 102747 8 0
Listing 2 – Sample V$ACTIVE_SESSION_HISTORY listing
As you can see the session seems to have performed some I/O (single as well as full table block reads) as well as encountered some transaction locking (Event “enq: TX – row lock contention). So, it seems that the user may have encountered some blocking lock from another session. The BLOCKING_SESSION (BlkSess) column listed shows which session it was and so we can quickly zoom in on the other session and figure out what is happening. In this particular case, it was a previous runaway process from the same user that was intermittently holding locks on the rows required by this session and thus raised the need to be terminated. You can also determine the objects accessed using the P1, P2 and P3 values if required. You can also see that the sequence numbers (SEQ#) have missing sequences – this is caused by the inability of ASH to collect all events due to a sample frequency of 1 second. (The complete set of events can be seen only in a 10046 Level 12 trace).

We have seen that a little known ASH report in the $ORACLE_HOME/rdbms/admin directory can produce a lot of information. The ‘ashrpt.sql’ report produces a summarized version of all user activity over the selected period – this provides a great advantage since you can go back and drill down to a period that is more granular that an AWR or ADDM period (which defaults to an hour). You can choose to list the details only a Session, a particular SQL ID, a Wait Class, a Service, Module or Client ID over a particular period. We have chosen to look at all the active sessions in the past 5 minutes in the report listed in Listing 3.
 Analysis Begin Time: 23-Feb-07 19:50:18

 Analysis End Time: 23-Feb-07 19:54:38

 Elapsed Time: 4.3 (mins)

 Sample Count: 531

 Average Active Sessions: 2.04

 Avg. Active Session per CPU: 0.51

 Report Target: None specified

Top User Events

 Avg Active

Event Event Class % Activity Sessions

----------------------------------- --------------- ---------- ----------

enq: TX - row lock contention Application 48.40 0.99

db file scattered read User I/O 42.18 0.86

CPU + Wait for CPU CPU 8.10 0.17

<snip>

Top Sessions

-> '# Samples Active' shows the number of ASH samples in which the session

 was found waiting for that particular event. The percentage shown

 in this column is calculated with respect to wall clock time

 and not total database activity.

-> 'XIDs' shows the number of distinct transaction IDs sampled in ASH

 when the session was waiting for that particular event

-> For sessions running Parallel Queries, this section will NOT aggregate

 the PQ slave activity into the session issuing the PQ. Refer to

 the 'Top Sessions running PQs' section for such statistics.

 Sid, Serial# % Activity Event % Event

--------------- ---------- ------------------------------ ----------

User Program # Samples Active XIDs

-------------------- ------------------------------ ------------------ --------

 113, 333 48.40 enq: TX - row lock contention 48.40

BADAPP MN\MNUKRK20891 257/260 [99%] 0

 142, 1 48.40 db file scattered read 42.18

BADAPP MN\MNUKRK20891 224/260 [86%] 1

 CPU + Wait for CPU 6.21

 33/260 [13%] 1

<snip>

Activity Over Time

-> Analysis period is divided into smaller time slots

-> Top 3 events are reported in each of those slots

-> 'Slot Count' shows the number of ASH samples in that slot

-> 'Event Count' shows the number of ASH samples waiting for

 that event in that slot

-> '% Event' is 'Event Count' over all ASH samples in the analysis period

 Slot Event

Slot Time (Duration) Count Event Count % Event

-------------------- -------- ------------------------------ -------- -------

19:50:18 (42 secs) 86 enq: TX - row lock contention 43 8.10

 db file scattered read 39 7.34

 CPU + Wait for CPU 4 0.75

19:51:00 (1.0 min) 119 enq: TX - row lock contention 58 10.92

 db file scattered read 50 9.42

 CPU + Wait for CPU 11 2.07

19:52:00 (1.0 min) 126 enq: TX - row lock contention 60 11.30

 db file scattered read 50 9.42

 CPU + Wait for CPU 13 2.45

19:53:00 (1.0 min) 123 enq: TX - row lock contention 59 11.11

 db file scattered read 49 9.23

 CPU + Wait for CPU 15 2.82

19:54:00 (38 secs) 77 enq: TX - row lock contention 37 6.97

 db file scattered read 36 6.78

 CPU + Wait for CPU 3 0.56

Listing 3 – Sections of the ASH Report
In addition to the above, the full report lists the “Top” Background events, P1/P2/P3 values (in case of frequent occurrence of a particular object or lock), Service/Module/ClientIDs, SQL Commands, Literals, Blocking sessions, DB Objects, DB Files, etc. This can also be filtered by Service/Module/ClientID, etc. There is just so much analysis that is now possible using ASH!!
Other tidbits
If you have been dealing with the ‘enqueue’ and ‘latch free’ event before in earlier versions, you are in for an unexpected treat when looking at ASH (and in V$SESSION/V$SESSION_WAIT views) – these events are broken out into categories that make much more sense. In fact, the ‘latch free’ event now shows 29 different types of latching and the ‘enqueue’ event breaks out into an amazing 208 types! Now you will not have to interpret P1 to determine the type of latch or enqueue, a small but very helpful boon. However, this is not broken out in the very familiar V$SYSTEM_EVENT which is a pity.

ASH has its own hidden parameters - those that start with _ (underscore) and should NOT be changed except under Oracle Support’s direction. This includes _ash_enable, which by default is set to TRUE and seems to allow ASH to be switched off. Other parameters include _ash_disk_filter_ratio, the ratio of inmemory sample to flush (every 10th by default); _ash_eflush_trigger, the percentage at which an emergency disk flush should occur (66% by default); _ash_disk_write_enable (enable ASH history flushing to disk), _ash_sample_all (sample everything including inactive sessions) and _ash_sampling_interval, the time interval between ASH samples (1,000 milliseconds or 1 second by default). Changing these values may adversely affect the behavior of ASH. As the TV commercial says, “Don’t try this at home” (or on your production instance)! You can also get some more details of ASH Internals as well as dump the data to external files – refer Metalink Note# 243132.1.
The concept of Client ID and related tracing has also been introduced in Oracle Database 10g. Using various procedures such as CLIENT_ID_STAT_ENABLE(<client id>) in the DBMS_MONITOR inbuilt package, you can set the flag to collect statistics at the session, service, module or action level. This provides an easy method for aggregating statistics at various levels. You can also selectively enable trace at these levels using other calls and then summarize the trace files using a new OS level Oracle utility. This is a great advance over trying to trace individual sessions, especially when they are connection pooled. Look at Metalink Note 281787.1 for more details. OTN/OraMag articles http://www.oracle.com/technology/oramag/oracle/04-sep/o54talking.html and http://www.oracle.com/technology/oramag/oracle/04-jan/o14tech_perf.html as well as this article at http://www.databasejournal.com/features/oracle/article.php/3447031 adds to this note. This tidbit is actually worth a paper of its own actually!
ADDM – Your inbuilt (and unpaid!!) expert

The Automatic Database Diagnostic Monitor (ADDM) is probably the most important of the advisors and is indeed the starting point in the investigation of any performance issue in Oracle Database 10g. Affectionately called “ADDuM” or “ADAM,” this component of the Database Diagnostic Pack is a powerful aide when it is understood and used carefully. Simply stated, it is a self-diagnostic mechanism built into the kernel that automatically examines and analyzes the AWR snapshots at the end of every snapshot with the objective of determining any performance-affecting issue. It is then able to recommend corrective action; these recommendations come with an expected benefit. ADDM does not stop with these recommendations. Just as a general practitioner examines a patient in an initial investigation and recommends further examination in particular areas by other specialists, ADDM can direct the performance analyst to other advisors such as the SQL Tuning Advisor or the SQL Access Advisor when it determines that a problem exists. By default, ADDM executes at the end of every scheduled snapshot, performing a scheduled “database performance health checkup” using the captured AWR snapshots. In effect, it is casting an expert eye on the AWR report in a scheduled manner, every time, all the time. This is equivalent to an unpaid expert DBA performing analysis of these snapshots 24/7/365! These recommendations and findings are stored in the database so that you can analyze and report on them later on, at a convenient time.

Internally, ADDM applies certain rules to the massive amount of performance data collected by AWR. These rules have been based on the collective experience of many tuning experts within the Oracle RDBMS design and other teams. The goal of ADDM is simple - reduce the "DB Time" component generated by any load on the database. In Oracle Database 10g, this DB Time is the total time spent by the foreground sessions performing useful work. In other words, it is a combination of CPU spent parsing and executing SQL, PL/SQL, and Java as well other overheads such as process setup and management. When triggered, ADDM drills down into the performance statistics to identify the root cause of problems rather than just the symptoms, and reports the overall impact of the issue on the system as a whole. In making a recommendation, it reports the benefits that can be expected, again in terms of this DB Time. As we said before, the use of this common currency allows the impact of several problems or recommendations to be compared effectively.
Using such a well-understood and easily identifiable set of components to quantify the impact also prevents judgments based on experience rather than hard figures. For example, while interpreting a STATSPACK report, a rule of thumb, based on experience or "expert advice", might have indicated that an IOPS (the number of I/O operations per second) should not exceed the rate of, say, 1,000 per second. Anything exceeding this rate was classified as a problem that should be fixed. That said, we are aware of many systems that can run significantly higher IOPS rates without noticeably affecting performance. Using the new Time and Wait model data in AWR, ADDM can now report quantitatively that such I/O operations are, say, taking 30% of time spent in the database during that period. This quantified value makes it much easier to understand the problem and help determine the effect of fixing the issue, rather than just making a judgmental statement such as “The database is performing too much I/O.” Better still, it helps the performance analyst concentrate on what is important to tune so that the fix has the most effect. While this is an area where ADDM excels, it also encourages us to look at absolute performance figures and thresholds in a new way.
ADDM handles the most frequently observed performance problems and drills down to the root cause rather than taking the easier approach of just reporting symptoms. This reporting includes but is not limited to problems seen in the following areas:

· CPU bottlenecks. Is the system CPU bound by Oracle processes or by some other applications?

· Excessive parsing. Is there too much parsing due to use of short SQLs that do not use bind variables?

· Lock contention. Is there application-level lock contention?

· Concurrency. Is there an excessive number of buffer busy waits, latching, and the like, which reduce concurrency and thus prevent the application from scaling effectively?

· I/O capacity. Is the I/O subsystem performing as required, as compared to a set of expected I/O throughput figures?

· Incorrect sizing of Oracle memory and file structures. Are Oracle memory structures, such as the buffer cache and redo log buffer, adequate? Are Oracle’s file structures, such as the size of redologs, adequate? Are Oracle settings, such as an aggressive MTTR (mean time to recover), stressing the system?

· High-load SQL statements. Are any SQL statements consuming excessive system resources?

· High-load Java and PL/SQL time. Are Java and PL/SQL statements consuming a large amount of resources?

· Poor connection management. Are there excessive logon/logoff rates?

· Hot objects. Are any “hot” objects assessed repeatedly and needing investigation?

· RAC-specific issues. Are there any hot blocks in the global cache that result in inter instance contention? Is the interconnect behaving properly, without any latency issues?

ADDM reports these problems as “findings,” but does not stop with the diagnosis; it recommends possible solutions, based on the detected problem areas. When appropriate, ADDM recommends multiple solutions for the performance analyst to choose from. These are in the form of recommendations, and include the following:

· Hardware changes. This includes increasing the CPU capacity or changing the I/O subsystem configuration.

· Database-configuration changes. This includes changing initialization parameter settings, such as those for session caching of cursors, sort area size, and so on.

· Schema-level changes. ADDM may recommend partitioning a table or index, using automatic segment-space management (ASSM) for certain segments, and so on.

· Application changes. ADDM may recommend using the cache option for sequences when it encounters high access rates for SEQ$, and recommend using bind variables when it observes short SQLs that have hard-coded values.

· Using other advisors. ADDM may recommend running the SQL Tuning Advisor on high-load SQL or running the Segment Advisor on hot objects.

ADDM is also smart enough not to perform an analysis when it is not required to do so. When invoked at the end of every AWR snapshot, ADDM first determines the DB Time spent within the snapshot period. When this value is insignificant compared to the total time period of analysis, ADDM does not proceed further, instead recording the fact that there was no significant activity and thus the report was not generated. ADDM also highlights non-problematic areas in addition to the problem areas. This is based on wait classes that have been determined as not affecting the result significantly, but are nevertheless listed. A performance analyst can then quickly see that these wait classes were eliminated and hence not spend time and effort working on something that will not produce significant improvement. This is akin to a general practitioner assuring a patient that an otherwise worrying symptom is not the cause of a deeper issue, helping the patient concentrate on battling what is more important to his or her health. Sometimes, large values in STATSPACK reports that actually do not pose a problem seem alarming. Many a performance analyst has wasted time and resources trying to chase and fix such issues. As you can see, "ADDuM" is one smart dude!

Accessing ADDM

ADDM can be accessed both via the EM DB Console as well as the DBMS_ADVISOR API front-ended by the ‘addmrpt.sql’ script found in the $ORACLE_HOME/rdbms/admin directory. We will look at an actual example of how ADDM was used to determine an actual problem. In Figure 3 below, we see that ADDM kicked in after an AWR snapshot completed. Since some issues were found upon analysis, ADDM automatically determined root cause and was able to display the following information (highlighted on the figure).
[image: image3.jpg]B Gt e rotes ikt | &

Q- - ¥] B D] Psewen [rotes Jormonts @) | F] (- AL @ - ¥ 1) [) 4k

s [o ssccapO1ts 1ol Conolf st abasefnancelsemaporge GWEGGELSkypoorack database

VAlerts

Category [All ~1(60) ciitical 0 Waming B 5

) Tablespaces Ful Tablespace Space Used Tblespace HIFIRE is 85 percent Jan 31, 2007
) 31416 AM

) [Databasedob Broken Job Count 1 iob(s) are broken Jan 17, 2007
Status 6:27:33 AM

4 [Databasedob Failed Job Count 1 ioh(s) have failed Jan 16, 2007
Status 92233 PM
) Snapshot Too OId Snapshot Too OId due to Snapshot Too Ol Eror dstected: SOL ID SkwpO4rgB41nz, Snapshot SCN Jan 8, 2007

Tablespace Limit 0x0037 cATI5b5f, Recent SCN Dx0037 d33d5a8 Undo Tablespace UNDOTBS, Current 10:07:09 PM

Undo Retention 345612

) Invalid Objects by Owner’s Invalid Object 8 ohjeci(s) are invald n the HIFIRE schema. Nov 23, 2006

Schema Count 43736 PM

B Related Alerts

Performance Analysis
Period Start Time Jan 31, 2007 9:00:: ZB AM Period Duration (minutes) 60.22

SQL statements consurming significant database time were found 5 50L Tuning
) 522 Individual database segments responsible for significant user /O wait were found 3 Segment Tuning

Job Activity
Jobs scheduled to start no more than 7 days ago

Scheduled Executions 0 Running Executions 0 Suspended Executions v 0 Problem Executions v 0

Home [Performance Administration Maintenance

Related Llnks

@ [e B~ P T

Figure 3 – ADDM Analysis
You can see that ADDM will present three sections:

· Impact – This section shows you the impact percentage of that section of the load. In the case above,

· Findings – What ADDM found as the problem causing that impact. Each finding text is actually a hyperlink that lead to what can be done to alleviate the issue. Clicking on this opens up the screen shown in Figure 4.

· Recommendations – This is a preview of what ADDM recommends. This includes SQL Tuning, Segment Tuning, Application tuning, Session Management and so on

Figure 4 below shows up when we clicked on the first finding above. Note that ADDM is able to recommend the next steps, i.e. that the SQL Advisor be used to tune the SQL statement. You can choose to schedule all of these SQL statements together (using the “Schedule SQL Tuning Advisor”) as a SQL Tuning Set (STS) or on the individual SQL statement. If the selected SQLs will all run together, then it is advisable to tune them together as a STS. We will see this occur in the Advisor section.
[image: image4.jpg]El [

Qo - () - (%] &) | 5w [rolses 5 paveries .- ¥ D ([el

Adhess [2] htps/jussceappit:1 15afemjconsolejdatabase/instance/hdm?dbPageum=1task ic 499&event:f\nd\aneta\\s&f\nd\nqlD:Smavqet:GWEBDZUmype:madﬂ Do [ws & -@

Recommendations H
Select Al | Select None | Show All Detals | Hide Al Details
Select Details Category _ _|Benefit @) = |
¥ ¥ Hide SQL Tuning — 522
Action Run SQL Tuning Advisor on the SOL statement with SQL_ID “Skwp04rg8a1nz"{ (Run Advisor Now)
SOL Text INSERT INTO HF_LEVERAGE_DETAILS USING SELECT LEV.REQUESTAR Sbuiged) |
SOLID Skwpldrgfding
T ¥Hide SQL Tuning [48

ActionTune the PL/SQL block with SOL_ID "244K7jqgdmp:
Reference”
SQL Text DECLARE job BINARY_INTEGER := :joby next_date DATE := :mydate; broken EOOLEAN
SQLID 264k7jggdrpd

" Refer to the “Tus

g PL/SOL Applications™ chapter of Oracle’s "PL/SQL User's G

T ¥Hide SQL Tuning [48

ActionTune the PL/SQL block with SQL_ID "Jadvm2avth9jw". Refer to the "Tuning PL/SQL Applications™ chapter of Oracle’s "PL/SQL User's Guide
and Reference”

SQL Text DECLARE job BINARY_INTEGER.
SQLID Yatvm2avhdiw

job; next_date DATE

mydate; broken BOOLEAN

¥V Hide SQL Tuning [] 17.4

Action Run SQL Tuning Advisor on the SQL statement with SQL_ID ‘7hmyShdq0r53". (Run Advisor Now)
SQL Text UPDATE HF_INTEROPERABILITY_REPORT SET HBA= B16 . HBA BIOS = ‘615 HEA BUS =
SQLID 7bmy3h3a0is3

Rationale SQL statement with SQL_ID "7hmy9hv9q0r53” was executed 17 times and had an average elapsed time of 66 seconds.

¥V Hide SQL Tuning [] 124

Action Run SQL Tuning Advisor on the SL statement with SQL_ID "f173nw385hn6d". (Run Advisor Now)
SQL Text UPDATE HE_INTEROP_REPORT_DOWNLOAD SET ATTRIBUTE_VALUE = :B2 WHERE INTEROPERABILL

[EToe [o B B =T

Figure 4 – ADDM recommendations
The same report above can be produced via the ‘addmrpt.sql’ script located in $ORACLE_HOME/rdbms/admin directory. The same information above is produced in either text or HTML format.

All this begs the question: Should you sit in front of the EM DB Console and check for issues every day? How do we warn ourselves that a performance problem is occurring or has occurred? The key is to know how to mine ADDM data for issues. In this regard, the following tables will be of assistance. (These tables are involved with the Tuning advisors as well, but we will deal with them now).
	Table
	Description

	DBA_ADVISOR_LOG
	This view shows the state of all tasks from all advisors, including ADDM. Scheduled ADDM runs are stamped as ADDM:DBID_Instance_Snapshot_ID for easy identification, while manually scheduled ADDM runs are named TASK_Task_ID. This can help differentiate between manual and automated runs.

	DBA_ADVISOR_FINDINGS
	This view exposes the findings of the various advisors. Both the type of finding and the expected impact is shown. See Listing 4 for an example of how this view can be used. When no significant activity occurs between two snapshots, the MESSAGE column in this view records messages to the effect that there was no significant database activity in various classes that required that ADDM be run to analyze that AWR snapshot. Thus you can use this as a criterion for discarding any ADDM tasks that need not be considered.

	DBA_ADVISOR_RECOMMENDATIONS
	This view details the advisor recommendations that follow the findings. The recommendations are tied to the findings. As well, the BENEFIT_TYPE and BENEFIT columns display the type and amount of expected benefit by following that recommendation.

	DBA_ADVISOR_ACTIONS
	This view exposes the actions required by the recommendations of the aforementioned advisors. Of particular interest is the MESSAGE column, and new in 10gR2, the MORE_INFO column.

	DBA_ADVISOR_RATIONALE
	This view lists the rationale behind the recommendations from the advisors. It identifies the impact of each recommendation. Look at the MESSAGE, IMPACT, and IMPACT_TYPE columns for more information.

Now that we have described the tables, we can use the tables to determine when an issue occurs.
SQL> select type, count(*) from dba_advisor_findings

 2 where task_id in

 3 (select task_id from dba_advisor_log where execution_start > sysdate - 1)

 4 group by type;

TYPE COUNT(*)

----------- ----------

INFORMATION 46

WARNING 1

SYMPTOM 49

PROBLEM 79

Listing 4 – Mining the Advisor findings for issues

In this case, we are able to look at what happened during the last 24 hours. We can ignore the “INFORMATION” and concentrate on the “PROBLEM”. Listing 5 below does just that:
SQL> select count(*) count, message

 2 from dba_advisor_findings

 3 where task_id in

 4 (select task_id from dba_advisor_log where execution_start > sysdate - 1)

 5 and type = 'PROBLEM'

 6 group by message

 7 order by count(*) desc;

COUNT MESSAGE

----- ---

 24 SQL statements consuming significant database time were found.

 24 SQL statements were found waiting for row lock waits.

 24 Individual database segments responsible for significant user I/O wait were found.

 4 The execution plan of this statement can be improved by creating one or more indices

 1 PL/SQL execution consumed significant database time.

 1 Significant virtual memory paging was detected on the host operating system.

 1 The throughput of the I/O subsystem was significantly lower than expected
Listing 5 – What we need to know to start tuning today!
We can then use the DBA_ADVISOR_LOG to determine the start time of the various issues and take it from there. The point is this: You can use this “insider” information to cut to the chase and get to the problems quickly using this information.

Tuning Advisors – Your bonus freebies

Oracle introduced the concept of inbuilt advisors starting in Oracle 9i. This version included the Database Buffer Cache Advisor (available in 9i Release 1 itself) as well as advisors for Shared Pool, Mean-time-to-recover (MTTR), Summary (MVIEW) and the PGA Target advisors. Oracle Database 10g extends this with a slew of new tuning advisors, including advisors for SQL Tuning, SQL Access, Segment (space fragmentation, online shrinking and segment growth trends) , Redo Logfile sizing, Tablespace and Undo Advisor. Many of these new advisors base their findings and advice on AWR performance data. Again, they follow the patterns established by ADDM, namely follow a logical path and generate advice based on internal rules that in turn was built with experience. In many cases, as with the Buffer Cache and Shared pool advisors, note that these are already present in Oracle 9i itself, but has never been utilized effectively. After reading this paper, we are hoping that you will end up reading the "New Features" guide, the Concepts, Reference and Tuning Guides for Oracle 9i, where all these advisors are described in great detail, and thus "re-discover" these nuggets and tools that were already at your disposal. We will touch upon just two of these advisors – the SQL Tuning Advisor (STA) and the SQL Access Advisor (SAA) as they pertain to tuning. The Advisors are usually accessed from the “Advisor Central” screen in EM Database Control as shown in Figure 5. An Advisor Framework ensures consistency and uniformity in the way advisors function in access, storage and reporting and this allow them to interact with each other seamlessly.
[image: image5.jpg]ora prise Manag Advisor Central - Microsol plo 18]]
He Edt yew Favomes oo e | &

Qe - © + [x) B (0] Dsown [rots frovntes @) | (- A L ol - 3§) [8%~

Adress €] it ussccapo1t: 1 159femconsolefdatabasenstoncechisorTasks?dbPagefim=16taskHameFiter=5event =reloadadsoryNameFher=segment™:208dvi x| (&3 6o |Liks | &3 - /&)

]

Advisor Central

Page Heflech AMPST (Refresh)
Advisors
ADDM Memory Advisor MITR Advisor
Segment Advisor SQL Access Atvisor SQL Tuning Adisor
Undo Management
Tsh
(Change Default Parameters)
Search
Select an adisory type and optionally enter a task name to fiter the data that is displayed in your results set
Advisory Type Task Name Advisor Runs__ Status

[ATypes = LastRun =]|Al =(CD)

By dfaul he search returns alluppercase matches heginring witthe siring you ntered. To run an exact or case-sensiive match, double quote the search strng. You can use the witcard
Symbal (%) in & double oted sting.

Results

View Result onelRa-schedue =] 60) |

scription User _|Status

@ Beamert |oeamENTADY B3a7se (Get shink advis based on object SYSTEMRUNNING Jan 31,2007 | | N
L s orowth trend | It 11:21:31 AM |
| SQL Tuning |SQI_TUNING 1170270052972 SQL Tuning SYSTEM COMPLETED Jan 31, 2007 592 30
| Awisor B e 11:02403 AM
| Apbbm |ADDM:4282061079_1_3353 ADDM auto run: snapshots [3352, YS COMPLETED Jan 31, 2007 2 0
3353, instance 1, database id 11:01:09 AM
) | |
| | 4282051079 | |

& T o @

Figure 5 – Advisor central
SQL Tuning Advisor

The SQL Tuning Advisor is actually a frontend interface to the deeper Automatic SQL Tuning capability of the query optimizer. The main objective of the SQL Tuning Advisor (STA in its short form) is to automate the entire process of tuning SQL. Along with the SQL Access Advisor, it tries to automate one of the hardest and most complex tasks of a performance analyst—that of changing the SQL or the environment in which it works so that the SQL statement runs more efficiently. The STA uses a kernel code component known as the Automatic Tuning Optimizer (ATO) which is an integral part of the query optimizer. The ATO is able to perform “what-if” analysis and creates a profile of the SQL statement called a SQL Profile. This SQL Profile consists of auxiliary statistics specific to that statement. The query optimizer under normal mode makes estimates about cardinality, selectivity, and cost that can sometimes be off by a significant amount resulting in poor execution plans. SQL Profile addresses this problem by collecting additional information using sampling and partial execution techniques to verify and, if necessary, adjust these estimates. During SQL Profiling, the Automatic Tuning Optimizer also uses execution history information of the SQL statement to appropriately set optimizer parameter settings as may be required.

Once analysis is done, it is presented as a recommendation to accept the SQL Profile. A SQL Profile, once accepted, is stored persistently in the data dictionary. Note that the SQL Profile is specific to a particular query. If accepted, the optimizer under normal mode uses the information in the SQL Profile in conjunction with regular database statistics when generating an execution plan. The availability of the additional information makes it possible to produce well-tuned plans for corresponding SQL statement without requiring any change to the application code. Not much information about the ATO is available outside of Chapter 12 in the Oracle Performance Tuning Guide. Much of it occurs under the surface of the STA and it is recommended that you use the STA (whether via EM Database Control or the DBMS_ADVISOR API) to access it. The DBMS_SQLTUNE API provides access to and manipulation of SQL Profiles, including copying profile in/out of the data dictionary. SQL Profiles are grouped into categories which can be applied and this allows you to perform ‘test-and-set’ with the use of different categories. I.e., you could generate a development category, switch certain SQLs to use this category for validation in production environments before you turn it on for everyone.
As we mentioned before, you can submit a single SQL statement by itself or a set of SQL statements as a “SQL Tuning Set” (STS) to both the STA and the SAA for tuning. The latter makes more sense as the ATO can make decisions as a whole considering all the statements. An STS is a database object that includes one or more SQL statements along with their execution statistics and execution context, and could include a user priority ranking. The SQL statements can be loaded into a SQL Tuning Set from different SQL sources, such as the AWR, the current cursor cache, or custom SQL provided by the user. An STS includes:

· A set of SQL statements

· Associated execution context, such as user schema, application module name and action, list of bind values, and the cursor compilation environment

· Associated basic execution statistics, such as elapsed time, CPU time, buffer gets, disk reads, rows processed, cursor fetches, the number of executions, the number of complete executions, optimizer cost, and the command type

· Associated execution plans and row source statistics for each SQL statement (optional)
Figure 6 below shows the result of the previous SQL tuning. Notice the highlighted recommendations, including SQL Profiles, Statistics (regeneration of stats), additional Indexing, SQL restructuring, etc. as solutions.

[image: image6.jpg]ora prise Manag 0 gR 0 02700529 0s0 plo E =18]

He Edt yew Favomes oo tep | &

Qo - O - [x] 18] | sewen [rotrs Sormonies @) | (0 A- L o - 3 10 [y 6B

dress 2] it ussccapo1t: 1 158{emconsoledatabasenstoncefsaluneosk [d=3501event=vien_resutsadhisoryCentrall RL=jemjconsoe{dtabesefinstancefadvis =] (&3 G0 |Liks | @3 - /&)

5

Selup Preferences Help Locout

ORACLE Enterprise Manager 10g
Database Control m

Database Instance: GWEBI2U > Adisor Certral > SQL Tuning Results:SQL_TUNING 1170270052972 Logged in As SYSTEM

SQL Tuning Results:SQL_TUNING_1170270052972

Page Refieshed Jan 31, 2007 11:22:38 AM

Status COMPLETED Tuning Set Owner SYSTEM
Stated Jan 31, 2007 11:02:03 AM Tuning Set Name TUNING_SET_1170270052672
Completed Jan 31, 2007 11:11:55 AM Time Limit (seconds) 1800

Running Time (seconds) 592

Recommendations o

View Recommendations

INSERT INTO HF_LEVERAGE_DETAILS USING SELECT
LEV.REQUEST_ID , LEV.ISR_NUMBER

\LEV REQUIREMENT_ID ,

© UPDATE HF_INTEROPERABILITY_REPORT SET HBA= B16. HIFIRE
HBA_BIOS = B15 , HBA_BUS = B14 , HBA_BUS_DESC

HIFIRE

@ Skwp04rgBA1nz

ZhmyShBg0i53

© UPDATE HF_INTEROP_REFORT_DOWNLOAD SET HIFIRE | n73nwoBshnd
ATTRIBUTE "VALUE = ‘B2 WHERE INTEROPERABILITY_ID = ‘B1
AND ATTR.

Database | Sstup | Prefstences | Help | Logout
Copyright © 1398, 2005, Oracle. Al rghts reserved.
bt Orscle Enterpise Msnager 109 Databaze Cantrol

& T T o @

Figure 6 – SQL Tuning Advisor results

Clicking on the “View recommendations” tab displays the screen shown in Figure 7.
SQL Access Advisor

The SQL Access Advisor works alongside the SQL Tuning Advisor and could be called by the former when appropriate. It is a tuning tool that provides advice specifically on materialized views, indexes, and materialized view logs. Given a specified workload in the form of a SQL tuning set or even individual SQL statements, the SQL Access Advisor recommends the creation of materialized views, materialized view logs, and indexes for a given workload. In general, as the number of materialized views and indexes and the space allocated to them is increased, query performance improves. The SQL Access Advisor considers the tradeoffs between space usage and query performance and recommends the most cost-effective configuration of new and existing materialized views and indexes. The SQL Access Advisor is actually based on and builds upon the Oracle 9i Summary Advisor.

[image: image7.jpg]ora P Reco dations for SQL ID:5kwp04rg8 osol plo 18]]
Bt o famies Tobs thh 3

Qe -) - ¥] B] | Psewer | rotes Joraonts @) |] (200 AL wl - ¥ 1) [) 41

Adress [[2] htps/jussceapdit:1 15afemjconsolejdatabase/instance/saltune?ovw?hselected=08ovw?3haid% 3A0=28ovh . Shaid?3n = 3ovn aid s anz—ttovw v [6o ‘Unks »‘@ =
Recommendations for SUL 1D 0KwpUATg84 ThZ
Retum)

Only one recommendation should be implemerted.

SQL Text

INSERT INTO HF_LEVERAGE_DETAILS USING SELECT LEV.REQUEST_ID . LEV.ISR_NUMBER . LEV.REQUIREMENT_ID . LEV.BATCH_ID
LEV.PRODUCT_CONFIG_ID . LEV. CONFIG_NAME _ LEV.PRIORITY_ID . LEV.PRIORITY_DESC . LEV.A

Select Recommendation
Original Explain Flan

-indings.
e execuion plan of this statement can be

Rationale
Creating the recornmended indices
significantly improves the execution plan of
this statement. However, it might be
recommended index. preferable to run "Access Advisor” using a
HIFIRE.HF_HBA_MASTER representative SQL workload as opposed to a
(UPPER(HEA_MODEL_NAME") single statement. This will allow to get
comprehensive index recommendations
which takes into account index maintenance
overhead and additional space consurption.

Consider running the Access
Advisor to improve the physical
scherma design or creating the

mproved by creating ane or more indices

Predicate "SYS_ALIAS 2

BA_ID"<>0 used

Restructure

bt line ID 6 of the execufion plan i an inequlit:
ondition on indexed colunn "HBA_ID". This

Rewiite the predicate into an The optimizer is unable to use an index if the
equivalent form to take advantage predicate is an inequality condition or if there
of indices. is an expression or an implicit data type
conversion on the indexed colurmn

Consider removing the A cartesian product should be avoided
disconnected table or view from whenever possible because it is an expensive
this statement or add a join operation and might produce a large amount
condition which refers to it of data

(et

[

I A et

Figure 7 – SQL Tuning Advisor recommendations
Other Advisors
Other advisors of interest include the
· Segment Advisor where you can get advice on segments including recommendations to shrink the object. Quick tip: Metalink Note: 242736.1 10g NEW FEATURES on SEGMENT ADVISOR
· Undo Advisor which can be used to display Undo usage over a selected period and set Undo parameters using a GUI screen. The Undo Advisor can help you determine the best size for your undo tablespace to ensure successful completion of queries.
· Memory Advisor which can be used to display and change pool sizes in the SGA. It also serves as a frontend to the Shared Pool and Buffer Cache advisories on the SGA side as well as PGA Memory usage details on the PGA management.

· MTTR Advisor which deals with setting and display of the Instance recovery, Media recovery and Flash Recovery
Avoiding Advisor Pitfalls

You may have noticed that the approach taken by the advisors is very similar to that used by a performance analyst. For example, when the SQL Tuning Advisor is invoked, it checks for the presence of valid and up-to-date object statistics. It then performs access path analysis such as checking for the presence of appropriate indexes. The SQL Access Advisor performs a similar task while looking for opportunities to create materialized views and to utilize the query-rewrite facility. In other words, the advisors automate what a human would do (in this case, someone who knows Oracle tuning well!). Hence, when used incorrectly or without a complete understanding of the application and environment, the advisors suffer from the same shortfalls and mistakes that a human would be expected to commit. Some of these possible stumbling blocks and how to guard against them include the following:

· Out-of-the-box thinking. Sometimes, the solution to a perplexing performance issue is not the standard one, such as addition of an index or creation of a materialized view. The solution may instead be to redesign a part or even the whole application, or even something as simple as parallelizing the effort via the Parallel Query (PQ) or Parallel DML (PDML) facilities. Obviously, the advisors currently do not have the capability to think along these terms, while a human could. What you will need to do is to use the advice generated by the advisors as just that, and look beyond the obvious.

· False positives. In certain situations, a piece of advice that is currently valid may become invalid during another period. For example, the advice to drop certain unused indexes may be valid during normal days, but implementation (that is, the removal of these indexes) may result in performance issues during period-end reporting. In this case, the out-of-the-box solution may be to drop the indexes during the normal days and create them prior to such reporting requirements.

· Changing workload or environment. It is a given that an application’s code, usage, data size, and execution environment change constantly. Thus, the performance analyst must continually look for tuning opportunities and keep track of what was done prior. For example, you may need to regenerate an SQL tuning set because of the increased and changed code base. You might also have to keep regenerating SQL profiles for a set of Top SQL in a scheduled manner so that the profiles can accommodate changes in data and execution pattern.

In short, the performance analyst should consider the SQL advisors as just one more, albeit important, set of tools in the quest to keep the application and database performing well.

Metrics and SGA – No! This "SGA" stands for "Server Generated Alerts"

Most of the database statistics views that you know of and use with other versions are essentially cumulative counters. For example, the V$SYSTEM_EVENT view exposes the cumulative value of various Wait events in the database that have accumulated from the time the database started until the time when you chose to view it. Similarly, the V$SYSSTAT view displays accumulated database statistics since database startup. When performing reactive real-time performance diagnosis, however, it is the rate of change of the counter that is important, rather than its absolute value since instance startup. Knowing that the system performed 2,000 I/Os per second or 3 I/Os per transaction during the last minute is rather more helpful than knowing that the database has performed 27,000,000 I/Os since it was started. As such, you can call this "rate of change" a metric because you know that when a particular rate is excessive as compared to a previous lower rate of change, you might expect to see some performance issue. In other words, thresholds for alerting can often be set based on rates. These alerts are known as the SGA or Server Generated Alerts. Some of these were highlighted in Figure 1. Oracle Database 10g detects those using metrics and can optionally send you the SGA alerts via email.
In Oracle Database 10g, metrics are available in a pre-calculated manner, normalized by both time and transaction. Most metrics are maintained at a one-minute interval and are also available in a historical fashion. You can use these views to determine the units of various metrics that you will encounter. In fact, the EM agent uses these metrics to raise alerts. The following objects can be of interest for viewing and analysis:

· V$METRIC displays individual metrics from the immediate past, and is rolled up as V$SYSMETRIC. This is generated once every 15 seconds
· V$METRIC_HISTORY exposes the history of the V$METRIC view while V$SYSMETRIC_HISTORY does the same for V$SYSMETRIC. Using these views you can look at the metrics from the past hour.
· V$METRICNAME names and describes the units for these metrics, while V$METRICGROUP groups them.
· V$EVENTMETRIC is another view that displays values of Wait event metrics for the most recent and active 60-second interval and can be used to take a quick look at the summary of events that happened in the last active minute.
· V$SYSMETRIC_SUMMARY is another view that provides max, min, average and standard deviation on the metric history

· WRH$_SYSMETRIC_SUMMARY persists some of these values in the AWR

These values are built on a circular buffer in memory and are thus overwritten every minute or so. Note that on a quiet system, these values will live on past the minute—the start and end times for this quick snapshot can be seen from the BEGIN_TIME and END_TIME columns. The thresholds for that instance are exposed via DBA_THRESHOLDS. V$ALERT_TYPES groups and scopes these alerts. Most of these views are not documented in the Oracle Database 10g Reference Manual. For more details on how these views matter in Server Generated Alerts, look at MetaLink Note #266970.1.

Tracing the Advisors

A number of hidden parameters can be used to trace the advisors. Tracing these advisors can help determine how they work (to some extent). Please use them with caution as they can cause significant overhead. Some of the parameters are listed below:

_db_mttr_trace_to_alert
Dump trace entries to alert file

_optimizer_trace

Optimizer trace parameter

_smm_trace

Turn on/off tracing for SQL memory Manager

_stn_trace

SQL tracing parameter

_xpl_trace

Explain Plan tracing parameter

Advisor messages (aka Server Manageability messages)
The $ORACLE_HOME/rdbms/mesg/smgus.msg file contains translateable non-error messages generated by Server Manageability components such as Advisors, Alerts, Self-tuning components, Statistics, etc. These messages are mainly informational in nature. Two of these messages are reproduced below as an example:
“Host CPU was a bottleneck and the instance was consuming %s\% of the host CPU. All wait times will be inflated by wait for CPU.”
“The SQL statement with SQL_ID \"%s\" was found waiting for the Interested Transaction List (ITL) enqueue on the %s \"%s.%s\" with object id %s."

Wrap-up of new Oracle Database 10g features

So there you have it. This is a quick summary of some of the new features now available in Oracle Database 10g that have improved upon or totally transformed an existing feature. In many ways, this new flagship version has leap-frogged over the usual repertoire of incremental updates to existing features that used to be the norm for new versions. For more details, look at the following notes and manuals

· Oracle Database 10g Performance Tuning Guide

· Metalink Note:332889.1 Oracle Database 10g Migration/Upgrade: Known Issues and Best Practices with Self-Managing Database

· Metalink Note:276103.1 PERFORMANCE TUNING USING 10g ADVISORS AND MANAGEABILITY FEATURES

About the Author

John Kanagaraj is a Principal Consultant with DB Soft Inc., and resides in the Bay Area in sunny California. He has been working with various flavors of UNIX and Oracle since 1984 as a developer, DBA and system administrator. John is a frequent presenter at IOUG and OAUG and an invited speaker at Oracle OpenWorld. He has published many other articles and was awarded the IOUG Editor's Choice Award in 2006. He co-authored Oracle Database 10g: Insider Solutions, published by SAMS, and served as the technical editor of numerous other bestsellers. As the executive editor of IOUG’s SELECT Journal, John is always looking forward to developing and mentoring new authors! You can e-mail him at “ora_apps_dba_y@yahoo.com".

John Kanagaraj, IOUG COLLABORATE 07
1

Paper # 260

