Architecture and Infrastructure

Back porting ADDM, AWR, ASH and Metrics to Oracle 9i & 8i
John Kanagaraj, DB Soft Inc
Introduction

Oracle Database 10g has introduced a number of "automatic" features such as ADDM (Automatic Database Diagnostic Monitor), AWR (Automatic Workload Repository), ASH (Active Session History) and Server Generated Alerts (SGA) that are based on Server Metrics. These features are actually based on internal infrastructure components consisting of V$ and X$ views that existed even in Oracle 8i. Once we have understood how Oracle Database 10g uses such components in these "Automatic" features, it is a simple matter to "back port" much of this functionality to the older versions. In this paper, we will see some practical examples of this back porting and point to other areas that can benefit from this. We will also list what features cannot be "back ported" and why.

A Quick Overview of relevant features

Oracle Database 10g has introduced a slew of features, many of them entirely new. The main thrust in this flagship version of the database has been to automate the traditional database administrative functions, support enterprise grid computing, and ultimately reduce the TCO (Total Cost of Ownership) of running a scalable and highly available database. Many architectural changes have been made to improve memory handling, resource management, storage provisioning, SQL tuning, data movement, recovery speed, and globalization.
The older versions such as Oracle 8i and 9i, although powerful enough in their own right do not have these features. However, during reading up on, analyzing and testing Oracle Database 10g in detail for the book titled "Oracle Database 10g Insider Solutions" (ISBN 0672327910) co-authored with Dr. Arun Kumar and Richard Stroupe, I realized that a large portion of these features, or at least those used for performance monitoring and tuning were actually built on data and theory that was already familiar to us all. And that had me thinking (once I completed writing/editing the book – not an easy task!) and working on porting some of those features back to the older versions that I was still using and managing. I would like to share that information with you all and hence this paper!

For the purpose of this paper, we will deal only with a few of those features that are useful but are not present in older versions such as Oracle 9i and 8i and determine if we can back-port some of the functionality to the older versions. Specifically, we will look at the basics of a few features including AWR, ASH, ADDM, SGA Tuning and Metrics. We will see how they all work together so that we can use existing and possibly equivalent features in the older versions. Much of information about Oracle Database 10g presented in this paper has been adapted from my book and I acknowledge that with gratitude to my publisher - SAMS (Pearson).
AWR – The Performance Data Warehouse

The Automatic Workload Repository or AWR for short is the performance data warehouse of Oracle Database 10g. All versions of the Oracle Database produce a vast amount of performance data. In Oracle Database 10g however, this is taken to a whole new level. The Automatic Workload Repository (AWR) is a new infrastructure component that is at the heart of the collection, storage and processing of this data. This data forms the basis for most of the problem detection and self-tuning mechanisms that Oracle Database 10g provides. In fact, the performance-alert mechanisms rely on this data, as do many of the performance advisors. The Automatic Database Diagnostic Monitor (ADDM) uses this data as well, performing scheduled analysis of the data collected by AWR. AWR consists of two components: in-memory performance statistics, accessible through V$ views, and snapshots of these V$ views “persisted” in the database that record the historical values. AWR consists of the following collections:

· Active Session History (ASH)

· High-load SQL statements

· Time model statistics at the database level as well as at the session level for CPU usage and wait classifications

· Object statistics that record usage as well as access counts for segments such as tables, indexes, and other database objects

· Snapshots of traditional V$SESSTAT, V$SYSSTAT, V$SYSTEM_EVENT, and V$SESSION_EVENT data
In many ways, AWR resembles and traces its roots from its well known predecessor – STATSPACK. The data that AWR collects is very similar to that collected by STATSPACK and the AWR report looks very similar if not exactly the same as a STATPACK report. The concepts are similar: Capture snapshots of required internal V$ views, store them, and report them. There are some major differences between AWR and STATSPACK, however that we will need to discuss so we can lay the groundwork for what we can and cannot bring over to the lower versions where STATSPACK is available as the framework for performance data collection, storage and reporting.

· Both STATSPACK and AWR snapshot selected V$ performance views that expose current performance data and store it in clear-text in similarly named tables. Both types of snapshots are uniquely identified via the SNAP_ID column. For example, the tables STAT$SYSTEM_EVENT and WRH$_SYSTEM_EVENT store exactly the same data – snapshots of V$SYSTEM_EVENT – in STATSPACK (PERFSTAT schema) and AWR respectively.
· Both STATSPACK and AWR produce similar reports using packaged SQL*Plus scripts. STATSPACK uses spreport.sql, while AWR uses a number of AWR-specific scripts. As we said before, the headings and data reported by both are very similar if not exactly the same.
· While STATSPACK needs to be installed manually and managed carefully, AWR is installed, configured, and managed by default in a standardized manner. In fact, AWR is switched on by default to collect snapshots once an hour, with purging built in automatically.
· STATSPACK snapshots impose a reasonable load during collection. However, AWR collections occur continually and are offloaded to selected background processes, allowing for smoother, less perceptible and less disruptive progress.

· STATSPACK analysis is complex and needs a skilled eye and an adequate level of experience to detect problems. AWR, along with ADDM, runs continually, generates alerts, and performs analysis automatically.

· STATSPACK is not accessible via a GUI such as OEM for viewing or management, whereas AWR is accessible both via the OEM GUI as well as via SQL and PL/SQL for viewing and management.

· The way high-impact or high-load SQL is captured in AWR is quite different from STATSPACK, and this is one of major differences, and indeed a weakness in STATSPACK. While STATSPACK scans V$SQL for high-load SQL based on a certain set of defaulted lower limits, such as on number of logical and physical I/Os per stored SQL statement, AWR recognizes high-load SQL as it occurs. This enables accurate capture of the right SQL data as it occurs, rather than collecting high-load SQL from V$SQL, which may capture SQL that occurred prior to, and thus outside of, the snapshot period.

· STATSPACK does not store session level information, while session history for active sessions (which is exposed via ASH) is also stored in AWR tables. This is another deficiency in STATSPACK

· AWR data includes data from the "Time and Wait" models. STATSPACK does not include this data since the lower versions do not classify performance data using this model.

· STATSPACK data is stored in the PERFSTAT schema in any designated tablespace, while AWR data is stored in the SYS schema in the new SYSAUX tablespace.
Since both STATSPACK and AWR function somewhat similarly, it is possible for us to adapt some part of the workings of AWR using STATSPACK data. More on that later!

ASH - What happened to the sessions?!
Simply stated, ASH is the new Oracle database 10g performance component that exposes a historical view of the active sessions. It samples the session states of all active sessions in memory once every second and exposes a history of their states, include wait event information. The reasoning behind the provisioning of this very interesting data is to allow the performance analyst to perform on-the-spot analysis of a current session as well as to be able to look at the overall breakdown of session-related information in the short term. In the short term, this is exposed using the V$ACTIVE_SESSION_HISTORY. This view is presented from a circular buffer in memory and the data within is thus transient. Every 10th sample (by default) is "persisted" in the WRH$_ACTIVE_SESSION_HISTORY table, and this data is linked to the SNAP_ID value of the current AWR snapshot. In effect, if one is able to detect a performance issue using two snapshots, it is now possible to look at the sessions that contributed to this issue in an after-the-fact manner, which is indeed powerful. Keep in mind that although ASH is part of and is linked to AWR, we will look at ASH by itself.
ADDM – Your inbuilt (and unpaid!!) expert

The Automatic Database Diagnostic Monitor (ADDM) is probably the most important of the advisors and is indeed the starting point in the investigation of any performance issue in Oracle Database 10g. Affectionately called “ADDuM” or “ADAM,” this component of the Database Diagnostic Pack is a powerful aide when it is understood and used carefully. Simply stated, it is a self-diagnostic mechanism built into the kernel that automatically examines and analyzes the AWR snapshots at the end of every snapshot with the objective of determining any performance-affecting issue. It is then able to recommend corrective action; these recommendations come with an expected benefit. ADDM does not stop with these recommendations. Just as a general practitioner examines a patient in an initial investigation and recommends further examination in particular areas by other specialists, ADDM can direct the performance analyst to other advisors such as the SQL Tuning Advisor or the SQL Access Advisor when it determines that a problem exists. By default, ADDM executes at the end of every scheduled snapshot, performing a scheduled “database performance health checkup” using the captured AWR snapshots. In effect, it is casting an expert eye on the AWR report in a scheduled manner, every time, all the time. This is equivalent to an unpaid expert DBA performing analysis of these snapshots 24/7/365! These recommendations and findings are stored in the database so that you can analyze and report on them later on, at a convenient time.

Internally, ADDM applies certain rules to the massive amount of performance data collected by AWR. These rules have been based on the collective experience of many tuning experts within the Oracle RDBMS design and other teams. The goal of ADDM is simple - reduce the "DB Time" component generated by any load on the database. In Oracle Database 10g, this DB Time is the total time spent by the foreground sessions performing useful work. In other words, it is a combination of CPU spent parsing and executing SQL, PL/SQL, and Java as well other overheads such as process setup and management. When triggered, ADDM drills down into the performance statistics to identify the root cause of problems rather than just the symptoms, and reports the overall impact of the issue on the system as a whole. In making a recommendation, it reports the benefits that can be expected, again in terms of this DB Time. The use of this common currency allows the impact of several problems or recommendations to be compared effectively.
Using such a well-understood and easily identifiable set of components to quantify the impact also prevents judgments based on experience rather than hard figures. For example, while interpreting a STATSPACK report, a rule of thumb, based on experience or "expert advice", might have indicated that an IOPS (the number of I/O operations per second) should not exceed the rate of, say, 1,000 per second. Anything exceeding this rate was classified as a problem that should be fixed. That said, we are aware of many systems that can run significantly higher IOPS rates without noticeably affecting performance. Using the new Time and Wait model data in AWR, ADDM can now report quantitatively that such I/O operations are, say, taking 30% of time spent in the database during that period. This quantified value makes it much easier to understand the problem and help determine the effect of fixing the issue, rather than just making a judgmental statement such as “The database is performing too much I/O.” Better still, it helps the performance analyst concentrate on what is important to tune so that the fix has the most effect. While this is an area where ADDM excels, it also encourages us to look at absolute performance figures and thresholds in a new way.
ADDM handles the most frequently observed performance problems and drills down to the root cause rather than taking the easier approach of just reporting symptoms. This reporting includes but is not limited to problems seen in the following areas:

· CPU bottlenecks. Is the system CPU bound by Oracle processes or by some other applications?

· Excessive parsing. Is there too much parsing due to use of short SQLs that do not use bind variables?

· Lock contention. Is there application-level lock contention?

· Concurrency. Is there an excessive number of buffer busy waits, latching, and the like, which reduce concurrency and thus prevent the application from scaling effectively?

· I/O capacity. Is the I/O subsystem performing as required, as compared to a set of expected I/O throughput figures?

· Incorrect sizing of Oracle memory and file structures. Are Oracle memory structures, such as the buffer cache and redo log buffer, adequate? Are Oracle’s file structures, such as the size of redologs, adequate? Are Oracle settings, such as an aggressive MTTR (mean time to recover), stressing the system?

· High-load SQL statements. Are any SQL statements consuming excessive system resources?

· High-load Java and PL/SQL time. Are Java and PL/SQL statements consuming a large amount of resources?

· Poor connection management. Are there excessive logon/logoff rates?

· Hot objects. Are any “hot” objects assessed repeatedly and needing investigation?

· RAC-specific issues. Are there any hot blocks in the global cache that result in inter instance contention? Is the interconnect behaving properly, without any latency issues?

ADDM reports these problems as “findings,” but does not stop with the diagnosis; it recommends possible solutions, based on the detected problem areas. When appropriate, ADDM recommends multiple solutions for the performance analyst to choose from. These are in the form of recommendations, and include the following:

· Hardware changes. This includes increasing the CPU capacity or changing the I/O subsystem configuration.

· Database-configuration changes. This includes changing initialization parameter settings, such as those for session caching of cursors, sort area size, and so on.

· Schema-level changes. ADDM may recommend partitioning a table or index, using automatic segment-space management (ASSM) for certain segments, and so on.

· Application changes. ADDM may recommend using the cache option for sequences when it encounters high access rates for SEQ$, and recommend using bind variables when it observes short SQLs that have hard-coded values.

· Using other advisors. ADDM may recommend running the SQL Tuning Advisor on high-load SQL or running the Segment Advisor on hot objects.

ADDM is also smart enough not to perform an analysis when it is not required to do so. When invoked at the end of every AWR snapshot, ADDM first determines the DB Time spent within the snapshot period. When this value is insignificant compared to the total time period of analysis, ADDM does not proceed further, instead recording the fact that there was no significant activity and thus the report was not generated. As you can see, "ADDuM" is one smart dude! Seriously, ADDM proceeds in a very logical fashion and the steps it takes can be imitated and back-ported. We will see an example of this later.

Tuning Advisors – Your bonus freebies

Oracle introduced the concept of inbuilt advisors starting in Oracle 9i. This version included the Database Buffer Cache Advisor (available in 9i Release 1 itself) as well as advisors for Shared Pool, Mean-time-to-recover (MTTR), Summary (MVIEW) and the PGA Target advisors. Oracle Database 10g extends this with a slew of new tuning advisors, including advisors for SQL Tuning, SQL Access, Segment (space fragmentation, online shrinking and segment growth trends) , Redo Logfile sizing, Tablespace and Undo Advisor. Many of these new advisors base their findings and advice on AWR performance data. Again, they follow the patterns established by ADDM, namely follow a logical path and generate advice based on internal rules that in turn was built with experience. In many cases, as with the Buffer Cache and Shared pool advisors, note that these are already present in Oracle 9i itself, but has never been utilized effectively. After reading this paper, we are hoping that you will end up reading the "New Features" guide, the Concepts, Reference and Tuning Guides for Oracle 9i, where all these advisors are described in great detail, and thus "re-discover" these nuggets and tools that were already at your disposal.
Metrics and SGA – No! This "SGA" stands for " Server Generated Alerts"
Most of the database statistics views that you know of and use with other versions are essentially cumulative counters. For example, the V$SYSTEM_EVENT view exposes the cumulative value of various Wait events in the database that have accumulated from the time the database started until the time when you chose to view it. Similarly, the V$SYSSTAT view displays accumulated database statistics since database startup. When performing reactive real-time performance diagnosis, however, it is the rate of change of the counter that is important, rather than its absolute value since instance startup. Knowing that the system performed 2,000 I/Os per second or 3 I/Os per transaction during the last minute is rather more helpful than knowing that the database has performed 27,000,000 I/Os since it was started. As such, you can call this "rate of change" a metric because you know that when a particular rate is excessive as compared to a previous lower rate of change, you might expect to see some performance issue. In other words, thresholds for alerting can often be set based on rates. In Oracle Database 10g, metrics are available in a pre-calculated manner, normalized by both time and transaction. Most metrics are maintained at a one-minute interval and are also available in a historical fashion. You can use these views to determine the units of various metrics that you will encounter. In fact, the OEM agent uses these metrics to raise alerts. V$METRIC displays metrics from the immediate past, while V$METRIC_HISTORY exposes the history. V$METRICNAME names and describes the units for these metrics, while V$METRICGROUP groups them. V$EVENTMETRIC is another view that displays values of Wait event metrics for the most recent and active 60-second interval and can be used to take a quick look at what happened in the last active minute. These values are built on a circular buffer in memory and are thus overwritten every minute or so. Note that on a quiet system, these values will live on past the minute—the start and end times for this quick snapshot can be seen from the BEGIN_TIME and END_TIME columns. The thresholds for that instance are exposed via DBA_THRESHOLDS. V$ALERT_TYPES groups and scopes these alerts. Most of these views are not documented in the Oracle Database 10g Reference Manual. For more details on how these views matter in Server Generated Alerts, look at MetaLink Note #266970.1.
Wrap-up of new Oracle Database 10g features

So there you have it. This is a quick summary of some of the new features now available in Oracle Database 10g that have improved upon or totally transformed an existing feature. In many ways, what this new flagship version has done is to leap-frog over the usual repertoire of incremental updates to existing features that used to be the norm for new versions. However, that does not necessarily mean that all is lost for your existing versions and you have to upgrade to get the new bells and whistles. The purpose of this paper is to show you, using some examples, how you can also follow along the path blazed by this new version. We will not, as stated before, be able to reproduce all the new features. However, we will establish a pattern and methodology so that you yourself can add to it and extend it as you require.
Back-porting to Oracle 9i and 8i
Essential to understanding how you can back-port these features is careful study of existing functionality in the older versions as well as understanding the new. To that end, we will look at the first example that will show how you can approach this issue.
The first example

In this example, we will compare and contrast session state information available in Oracle 8i (and 9i) versus that available from ASH in Oracle Database 10g. The session-state information for active sessions exposed in ASH is collected by a very low-overhead direct memory sampling of the session-state information that is held in the SGA for all sessions. The display of session-state information is not exactly new, however. Way back, Oracle 7 introduced the V$SESSION and V$SESSION_WAIT views, which could be combined to provide many details of the state of a particular session from a snapshot of it. The information, of course, is current at the time these views were queried, and is not stored anywhere for later analysis. To analyze this, let’s use an example. The query in Listing 1 shows how you can obtain these session details. We have listed the various column and other SQL*Plus settings in the query because they control the heading, formatting, and placement, and add value to the query.

SQL> set linesize 80 verify off

SQL> column sid_serial heading "Sid,Ser#" format a10

SQL> column spid format a5 heading "OSPid"

SQL> column process format a6 heading "ClntPr"

SQL> column username format a17 heading "DB/OSUser"

SQL> column status heading "Status" format a8

SQL> column program heading "Program" format a31 trunc

SQL> column machine_prog heading "Machine/Program/Module/Action" format a32 wrap

SQL> column last_call_et format 9999.99 heading "LastCallMn"

SQL> column logon_time format a18 heading "Logon Time"

SQL> column waiting_event format a47 heading "Waiting on event + p1/p2/p3" trunc

SQL> select s.sid || ',' || s.serial# sid_serial, p.spid, s.process,

 2 s.username || '/' || s.osuser username, s.status,

 3 to_char(s.logon_time, 'DD-MON-YY HH24:MI:SS') logon_time,

 4 s.last_call_et/60 last_call_et, decode(w.wait_time,0,'(W) ','(C) ') ||
 5 w.event || ' / ' || w.p1 || ' / ' || w.p2 || ' / ' || w.p3 waiting_event,

 6 s.machine || '/' || s.program || '/' || s.module || '/' || s.action machine_prog

 7 from v$process p, v$session s, v$session_wait w

 8 where s.paddr=p.addr and s.sid in (&List_of_Oracle_SIDs)

 9 and w.sid = s.sid

 10 order by s.logon_time;

Enter value for list_of_oracle_sids: 158,232

Sid,Ser# OSPid ClntPr DB/OSUser Status Logon Time LastCallMn

---------- ----- ------ ----------------- -------- ------------------ ----------

Waiting on event + p1/p2/p3 Machine/Program/Module/Action
--- --------------------------------

158,2310 2156 1368 APPS/applmgr ACTIVE 12-JAN-06 06:00:16 .38

(C) db file scattered read / 124 / 75857 / 8 test3000//CSTRINVR/Concurrent Re
 quest//
232,23516 31847 32846 SYS/oracle INACTIVE 12-JAN-06 18:55:06 10.02

(W) SQL*Net message from client / 1650815232 / Jkanagaraj/sqlplus@tst10gclnt (T

 NS V1-V3)//

Listing 1 Query against views showing session-state information

The SQL cleverly determines quite a lot of information from just the V$SESSION and V$SESSION_WAIT views; the V$PROCESS process is joined in order to provide operating-system process information (column OSPid) alone. Let’s look in detail at what these columns are so that you can understand how ASH builds on this. Sid, Ser# (serial number), OSPid, ClntPr (client process ID, if available), Logon Time, and DB/OSUser (database and OS user) columns are pretty self-explanatory, and are available from the V$SESSION and V$PROCESS views. As well, the Machine/Program/Module/Action column is taken directly from the corresponding V$SESSION columns. The MACHINE column is automatically populated and is a good one to look at when determining the source of the connection. The PROGRAM, MODULE and ACTION columns are populated only when the DBMS_APPLICATION_INFO package is used within the program to record this information. For more details on usage of the DBMS_APPLICATION_INFO, refer to MetaLink Note #67549.1. The V$SESSION.STATUS column shows whether the process was in the ACTIVE state within a database call or in the INACTIVE state after having completed it. A database call is an action being performed due to an SQL executed either directly by the session or indirectly due to a recursive SQL such as a trigger. Obviously, you would want to track all currently ACTIVE sessions. In the case of an ACTIVE session, LastCallMn (V$SESSION.LAST_CALL_ET) shows how many minutes the session has clocked since the last new call the session issued directly or indirectly and is a good measure of long-running SQL queries. In the case of an INACTIVE session, this is a good indication of how long it has been since the client session interacted with the back-end process to make a new call. Of course, the most interesting part is the detailed event information that is available in V$SESSION_WAIT.EVENT column. These columns are described in detail here so that you can understand them both in the context of older versions as well as within the context of Oracle Database 10g. Note that the meanings of these columns have not changed between versions. Note also the special "(C)" and "(W)" notations (shown in bold) that prefixes the EVENT values – we will come back to this a little later. The description of V$ACTIVE_SESSION_HISTORY is shown below in Listing 2.
SQL> desc v$active_session_history

 Name Null? Type

 --- -------- ----------------------------

 SAMPLE_ID NUMBER

 SAMPLE_TIME TIMESTAMP(3)

 SESSION_ID NUMBER

 SESSION_SERIAL# NUMBER

 USER_ID NUMBER

 SQL_ID VARCHAR2(13)

 SQL_CHILD_NUMBER NUMBER

 SQL_PLAN_HASH_VALUE NUMBER

 SQL_OPCODE NUMBER

 SERVICE_HASH NUMBER

 SESSION_TYPE VARCHAR2(10)

 SESSION_STATE VARCHAR2(7)

 QC_SESSION_ID NUMBER

 QC_INSTANCE_ID NUMBER

 EVENT VARCHAR2(64)

 EVENT_ID NUMBER

 EVENT# NUMBER

 SEQ# NUMBER

 P1 NUMBER

 P2 NUMBER

 P3 NUMBER

 WAIT_TIME NUMBER

 TIME_WAITED NUMBER

 CURRENT_OBJ# NUMBER

 CURRENT_FILE# NUMBER

 CURRENT_BLOCK# NUMBER

 PROGRAM VARCHAR2(48)

 MODULE VARCHAR2(48)

 ACTION VARCHAR2(32)

 CLIENT_ID VARCHAR2(64)

Listing 2 – Description of V$ACTIVE_HISTORY_SESSION, the foundation view for ASH

In contrast to the older views, the V$ACTIVE_SESSION_HISTORY which is the central view in ASH exposes a combination of session data available in V$SESSION (such as SESSION_ID, SERIAL#, USER_ID, SQL_ID, PROGRAM, MODULE, etc.) and wait related information available in V$SESSION_WAIT (EVENT, SEQ#, P1, P2, P3, etc) in a historic fashion. Thus, it is possible that ASH-like information can be reconstructed as shown above. Having understood this point, let us see how this can be applied. We will demonstrate some code that can be used to sample V$SESSION_WAIT data alone, and do it similar to ASH.
set linesize 80

set verify off

column seq# heading "Seq#" format 999999

column sleep_pause noprint

column event format a28 wrap

set numwidth 12

set pages 100

accept sid_to_check prompt 'Please enter SID to check : '

column seconds_in_wait format 999 heading "SecW"

select event, seq#, p1, p2, p3, seconds_in_wait,
sys.xxdba_pack.sess_sleep(1) sleep_pause from v$session_wait

where sid = &&sid_to_check

union all

select event, seq#, p1, p2, p3, seconds_in_wait,

sys.xxdba_pack.sess_sleep(1) sleep_pause from v$session_wait

where sid = &&sid_to_check

union all

select event, seq#, p1, p2, p3, seconds_in_wait,

sys.xxdba_pack.sess_sleep(1) sleep_pause from v$session_wait

where sid = &&sid_to_check

union all

<snip>

<repeat this 26 times, for a total of 30 times>

<snip>

union all

select event, seq#, p1, p2, p3, seconds_in_wait,

sys.xxdba_pack.sess_sleep(1) sleep_pause from v$session_wait

where sid = &&sid_to_check

;

undefine sid_to_check

set numwidth 8

Listing 3 – Code that simulates ASH – 30 samples
The function call to xxdba_pack.sess_sleep is an adaption of the DBMS_LOCK.SLEEP procedure call. We needed to wrap this procedure in order to create a function that can be called from a single SQL statement (since we cannot otherwise call this procedure directly). The code for this is shown in Listing 3

function sess_sleep (sleep_secs number)

return integer is

 ret_val integer;

begin

 sys.dbms_lock.sleep(sleep_secs);

 ret_val := 1;

 return ret_val;

end sess_sleep;

Listing 4 – Code for SLEEP function call that "sleeps" for the specified number of seconds
In short, the script in Listing 3 makes 30 consecutive calls to V$SESSION_WAIT, waiting a second between each call using the xxdba_pack.sess_sleep(1) which causes a delay of 1 second between calls. Listing 5 shows an actual example. In this particular problem we were debugging, incorrect code caused the SQL execution plan to miss using an existing index and the program was running for a long time. Knowing that the values shown in P1 and P2 for the event 'db file scattered read' points to the File ID and Block ID being read, we were able to determine that a Full table scan of a large table was being done (MTL_TXN_REQUEST_LINES in this case), and this helped us solve the issue. Note the SEQ# increments by quite a bit between samples. For example, in the first two lines, the SEQ# value jumped from 25012 to 25024. This indicates that we missed the 12 intervening events. Whether using ASH or our home grown script, this is part of any sampling mechanism.
07:54:22 SQL> @last30_waits

Please enter SID to check : 291

EVENT Seq# P1 P2 P3 SecW

---------------------------- ------- ------------ ------------ ------------ ----

db file scattered read 25012 427 184553 8 0

db file scattered read 25024 427 192185 8 0

db file scattered read 25028 427 195641 8 0

db file scattered read 25032 427 197713 8 0

db file scattered read 25036 427 200161 8 0

db file scattered read 25040 427 202945 8 0

db file scattered read 25044 427 205033 8 0

db file scattered read 25050 427 207617 8 0

db file scattered read 25054 427 209937 8 0

db file scattered read 25058 427 211897 8 1

db file scattered read 25063 427 215745 8 0

db file scattered read 25067 427 217425 8 0

db file scattered read 25071 427 219369 8 0

db file scattered read 25075 427 220873 8 0

db file scattered read 25079 427 224481 8 0

db file scattered read 25083 453 649 8 0

db file scattered read 25095 453 5705 8 0

db file scattered read 25099 427 232497 8 0

db file scattered read 25103 441 179145 8 0

db file scattered read 25106 441 181721 8 3

db file scattered read 25110 453 13129 8 0

db file scattered read 25114 427 239225 8 0

db file scattered read 25118 441 186265 8 3

db file scattered read 25122 453 17905 8 0

db file scattered read 25126 427 245409 8 0

db file scattered read 25130 441 193225 8 0

db file scattered read 25134 453 24881 8 0

db file scattered read 25138 427 253097 8 0

db file scattered read 25142 441 200009 8 0

db file scattered read 25146 453 31729 8 0

30 rows selected.

07:55:27 SQL> r

 1 select /*+ RULE */ segment_type, segment_name from system.xxdba_extents

 2 where file_id = 427 and 239225

 3* between block_id and block_id + blocks - 1

SEGMENT_TYPE SEGMENT_NAME

------------------------------ ------------------------------

TABLE MTL_TXN_REQUEST_LINES
Listing 5 – Example of V$SESSION_WAIT sampling

The point of this example is this: Just as ASH samples, exposes and stores session-state information in Oracle Database 10g, we can also sample and output session-state information in the older Oracle 8i and 9i versions (and even Oracle 7 if you still have it!!!). An important point to note though: ASH persists this information (at least every 10th sample) in the database in the long run. It also samples all active sessions, regardless of whether we are interested in them or not and exposes them via the V$ACTIVE_SESSION_HISTORY in-memory view from a circular buffer in the SGA. While it is great to have this information while debugging a system-wide problem, we have some extraneous information when looking for a single-spot issue. We would suggest that you do not store the information derived from V$SESSION_WAIT in the database as that would involve some overhead at a time when there is already some overheads. We would suggest however that you script these queries into a set of actions that snapshots a session whenever you have an issue for later debugging. In fact, I have a ready-made script that I can run when determining an issue. It spools the session level details from V$SESSION and V$PROCESS, session waits from V$SESSION_EVENT, session statistics from V$SESSTAT (linked to V$STATNAME for Statistic names), rollback / transaction usage from V$TRANSACTION and V$ROLLNAME, currently executing SQL from V$SQLTEXT and open cursors held by the session using V$OPEN_CURSOR, along with the last 30 waits as shown above. This snapshot provides such a wealth of information and is my usual starting point for a single session performance analysis.
The second example

Earlier, we indicated that we will look at the meaning of the "(C)" and "(W)" prefixes before the EVENT value for the sessions shown in Listing 1. In my notation, they stand for "ON CPU" and "WAITING" respectively. The significance of these values can be understood once you understand a weakness of the Wait Event Interface that we are all so familiar with. Simply stated, the V$SESSION_WAIT.EVENT column records the last instrumented wait event encountered by the session. The interpretation of whether it is actually waiting for that event to complete or it is executing something else in the CPU or waiting in the CPU queue can only be made based on the STATE and WAIT_TIME columns. For a currently active session that is now executing in the CPU, the V$SESSION_WAIT.WAIT_TIME column qualifies the validity of the V$SESSION_WAIT.EVENT column. You can see this explicitly used in the DECODE statement in Listing 1, and is seen clearly in the view definition for the V$ACTIVE_SESSION_HISTORY view (as determined from V$FIXED_VIEW_DEFINITION) shown in Listing 6.

SELECT /*+ no_merge ordered use_nl(s,a) */ a.inst_id, s.sample_id, s.sample_time,

a.session_id, a.session_serial#, a.user_id, a.sql_id, a.sql_child_number,

a.sql_plan_hash_value, a.sql_opcode, a.service_hash,

decode(a.session_type, 1, 'FOREGROUND', 2, 'BACKGROUND', 'UNKNOWN'),

decode(a.wait_time, 0, 'WAITING', 'ON CPU'),

a.qc_session_id, a.qc_instance_id, a.event, a.event_id, a.event#,

a.seq#, a.p1, a.p2, a.p3, a.wait_time, a.time_waited, a.current_obj#,

a.current_file#, a.current_block#, a.program, a.module, a.action, a.client_id

FROM x$kewash s, x$ash a

WHERE s.sample_addr = a.sample_addr

and s.sample_id = a.sample_id

and s.sample_time = a.sample_time;

Listing 6 – Defintion of the V$ACTIVE_SESSION_HISTORY View

We simply took this extra bit of interpretation of WAIT_TIME that was available in Oracle Database 10g and made it "decode(w.wait_time,0,'(W) ','(C) ')" to interpret a V$SESSION_WAIT event from Oracle 8i/9i. This gives a whole new meaning to the interpretation of the EVENT column. No longer do we have to wonder why a session seems "stuck" on a simple "db file" read event. Using the script in Listing 1 and based on the new interpretation from Oracle Database 10g, we can now determine whether a session is actually waiting or has been executing in the CPU for a long time. In our example show in Listing 1, we understand the session 158 is actually executing in the CPU and the 'db file scattered read' event in V$SESSION_WAIT.EVENT for that session was the last instrumented event. In other words, the session is NOT stuck on reading from the disk!! At the same time, the session 232 is actually INACTIVE and shows a prefix of "(W)" as it is waiting for Input from the front-end tool ('SQL*Net message from client' event). This is a prime example of knowledge gained in Oracle Database 10g being applied back to older versions. Going back to the example show in Listing 5, look at the SecW (SECONDS_IN_WAIT) column listed. We see that there was a SECONDS_IN_WAIT of 3 at SEQ# 25106. This showed us that after performing this read, the session moved to some un-instrumented code (usually tight loops in the CPU) that signals the use of tight nested loops and looped in the CPU for at least 3 seconds. Indeed the SQL execution plan indicated this as well, something to watch out for. In other words, we can deduce that CPU was being used heavily using this interpretation. See Listing 7 for an example.
09:36:12 SQL> @proc_to_sid

Enter value for list_of_os_process_ids: 11748

Sid,Ser# OSPid ClntPr DB/OSUser Status Logon Time LastCallMn

---------- ----- ------ ----------------- -------- ------------------ ----------

Waiting on event + p1/p2/p3 Machine/Program/Module

--- --------------------------------

261,24849 11748 180:30 SYSTEM/jkanagaraj ACTIVE 09-JUN-05 09:13:26 20.83

(C) latch free / 3243122152 / 66 / 0 USSCC-JKANAGA2 /plsqldev.exe/PL
 SQL Developer

09:36:30 SQL> @last30_waits

Please enter SID to check : 261

EVENT Seq# P1 P2 P3 SecW

---------------------------- ------- ------------ ------------ ------------ ----

latch free 827 3243122152 66 0 84

latch free 827 3243122152 66 0 84

latch free 828 3243106972 66 0 0

latch free 828 3243106972 66 0 0

<snip>
latch free 828 3243106972 66 0 0

latch free 828 3243106972 66 0 0

latch free 828 3243106972 66 0 35

latch free 828 3243106972 66 0 36

<snip>
latch free 828 3243106972 66 0 36

latch free 828 3243106972 66 0 37

<snip>
latch free 828 3243106972 66 0 37

latch free 828 3243106972 66 0 38

Listing 7 – Interpretation of Seconds_in_wait
From this session state sample, we can see that this session is latching heavily and much of it is spent spinning in the CPU. The SEQ# has just moved from 827 to 828 meaning that it completed one set of waits for 'latch free' (SEQ# 827), woke up from a "spin-sleep" cycle and then moved to another event, again "latch free" in this case (SEQ#=828) which meant that the latch was never released. The P2 value of 66 indicates that it is on the "cache buffer chain" latch. The values under SecW indicate large waits.

While we cannot simulate everything that ASH does, we can use our back-ported script for some on-the-spot debugging just as we would have used ASH for the same purpose if it were available. The ASH collection is actually very light-weight and is obtained by sampling the memory directly. It is exposed using both an in-memory buffer in full detail and later in a coarser form in an AWR table. In our case, we did not store this information in the database which means that it can be lost. We also used SQL access V$SESSION_WAIT which does have some overhead in latching and other areas. It is possible that you can also use direct memory access on the older versions as well. For more details, look at http://oraperf.sourceforge.net.
Back-porting ADDM
As we saw before, ADDM is a diagnostic engine that analyzes performance data collected by AWR. For our equivalent in Oracle 8i and 9i, we will then have to use STATSPACK data. While we cannot hope to fully replicate the diagnostic capabilities of ADDM, we can always take a one-step-at-a-time approach. As noted before, ADDM first reports an issue as a "finding", but does not stop there and takes us further to a "recommendation", all with the objective of reducing the total "CPU Time" spent. Let us take just one example and see how ADDM does this, and then use that knowledge to see how we should build this intelligence into the older versions. A sample ADDM report screen is shown in Figure 1 showing different types of findings and recommendations.
[image: image1.png]€ 2 RHNAdAEBTIRBI

Task Name [TASK_1494 (End Time:Feb 5, 2006 5:23:57 PM)

(view Snapshots) (View Report)

Database Time (minutes) 17.91 Period Start Time Feh 5, 2005 6:00:48 PM Period Duration (minutes) 23.15
Task Owner SYSTEM Average Active Sessions 017
Impact (%) © |Finding |Recommendations |
100 SQL statements consuring significant database time were found 5 50L Tuning
4455 SQL staterents were found wating for row lock waits 1 Application
Analysis
11.23 Session connect and disconnect cals wers consuming significant database time 1 Application
Analysis
7.34 Contention on bufer cache latches was consuming significant database time 1 5QL Tuning
6.23 Time spent on the CPU by the instance was responsible for a substantial part of database 2 SQL Tuning
time.
3.98 Soft parsing of SQL staternents was consuming significant database time 1 DB Configuration
1 Application

Analysis

3.97 Database latches in the "Other” wait class were consuming significant database time.
373 Wait event "class slave wait” in wat class "Other" was consuming significant database 1 Application

time. Analysis
3.26 Walt event "Queue Monitor Task Wait" in wait class *Other” was consurning significant 1 Apglication
database time Anlysis
26 Sequence cache misses were consuming significant database time 1 Application
Analysis

PInformational Findings

Database | Setup | Preferences | Help | Logout
Copyright ©1936, 2004, Oracle. Al rights reserved. s
‘About Oracle Entarpise Manager 104 Database Control

o

Figure 1 – Sample ADDM report screen

When ADDM encounters high loads as determined by the amount of CPU time spent by all the sessions, ADDM looks at the currently executing SQL statements to see if the cause of this load is the SQL statements themselves. If so, it then reports its findings as "SQL statements consuming significant database time were found". It follows that with a recommendation of "SQL Tuning" and also lists the impact based on the total CPU time spent (remember that is our common currency for comparison). At the same time, it is able to locate all the SQL statements that contributed to this cause and lists them using their SQL_ID. It can also determine the sessions that were involved and list them using their SESSION_ID which in turn can link them to the ASH data for these sessions so you can perform further analysis. All this information is derived from the AWR information stored with the snapshot in question. Also keep in mind that ADDM kicks in automatically at the end of every AWR snapshot to perform this analysis. (Tracing the ADDM report can provide very interesting SQL statements that the report executes in order to do this. We were able to determine that it accesses some internal objects and makes calls to an internal TYPE, but were unable to trace it further.)
The nearest equivalent in STATSPACK to this functionality is the code for the section titled "Top 5 Timed Events" in the STATSPACK report that can be generated using the SPREPORT.SQL. This section picks the top 5 events that consumed the most time, including CPU time. (If you are on Oracle 8i or Oracle 9i Rel 1, then this section appears as the "Top 5 Wait Events" and does not include the CPU Time component, but the code in Listing 9 will cater to all versions). This section from an actual Oracle 9i R2 instance is shown in Listing 8.
Top 5 Timed Events

~~~~~~~~~~~~~~~~~~                                                     % Total

Event                                               Waits    Time (s) Ela Time

-------------------------------------------- ------------ ----------- --------

CPU time                                                          922    54.08

SQL*Net message from dblink                        50,232         261    15.30

db file scattered read                            571,709         225    13.18

db file sequential read                           181,884         179    10.51

control file parallel write                        18,917          27     1.59

Listing 8 – "Top 5 Timed event" section from a STATSPACK report

This information is derived from just two STATSPACK tables. Snapshots of system-wide Wait event information are stored in the STATS$SYSTEM_EVENT table and snapshots of system-wide statistics are stored in the STATS$SYSSTAT table, both in the PERFSTAT schema. One more table, the STAT$IDLE_EVENT also participates in filtering out the "Idle events" that do not matter. We will list the raw code that can be used to derive this data directly from the STATSPACK data in Listing 9.
declare 

v_total_waits                   number;

v_time_waited                   number;

v_begin_id    NUMBER := 9949;  -- begin and end sample snapshots used in 
v_end_id    NUMBER   := 9950;  -- this example only
v_tot_cpu   NUMBER;

v_tot_wt    NUMBER;

v_end_date DATE;

v_curr_date DATE;

t_event varchar(60);

t_waits number;

t_time number;

t_pctwtt number;

/* This cursor fetches the Top 5 timed events, including CPU time */

cursor top_5 is

select event, waits, time, pctwtt

  from (select event, waits, time, pctwtt

          from (select e.event                               event

                     , e.total_waits - nvl(b.total_waits,0)  waits

                     , (e.time_waited - nvl(b.time_waited,0))/10000  time

                     , decode(v_tot_wt + v_tot_cpu*1000, 0, 0, 100

                     * (e.time_waited - nvl(b.time_waited,0))

                              / (v_tot_wt + v_tot_cpu*1000)

                              )                              pctwtt

                 from perfstat.stats$system_event b

                    , perfstat.stats$system_event e

                where b.snap_id(+)          = v_begin_id

                  and e.snap_id             = v_end_id

                  and b.event(+)            = e.event

                  and e.total_waits         > nvl(b.total_waits,0)

                  and e.event not in 

                        (select event from perfstat.stats$idle_event)

               union all

               select 'CPU time'                              event

                    , to_number(null)                         waits

                    , v_tot_cpu/100                               time

                    , decode(v_tot_wt + v_tot_cpu*1000, 0, 0,

                               100

                             * v_tot_cpu*1000

                             / (v_tot_wt + v_tot_cpu*1000)

                            )                                 pctwait

                 from dual

                where v_tot_cpu > 0

               )

         order by time desc, waits desc

       )

 where rownum <= 5;  -- Change this as required, currently only top 5

begin

dbms_output.enable (9999999);

      /* Get the total Time spent waiting on all events */

      select sum(e.time_waited) - sum(b.time_waited)

              into v_tot_wt

              from perfstat.stats$system_event e,

                   perfstat.stats$system_event b

              where b.snap_id = v_begin_id and e.snap_id = v_end_id

              and e.event not in (select event from perfstat.stats$idle_event);

      /* Get the total Time spent in the CPU */

        select e.value - b.value

        into v_tot_cpu

        from perfstat.stats$sysstat b, perfstat.stats$sysstat e

        where b.name = e.name

        and b.name = 'CPU used by this session'

        and b.snap_id = v_begin_id and e.snap_id = v_end_id;

open top_5;

   dbms_output.put_line('Top 5 Timed Events');

   dbms_output.put_line('~~~~~~~~~~~~~~~~~~');

   LOOP

    fetch  top_5 into t_event, t_waits, t_time, t_pctwtt;

    exit when top_5%NOTFOUND;

    dbms_output.put_line(t_event || ' ' || to_char(t_waits,99999990) || ' ' ||

    to_char(t_time,99999990) || ' ' || to_char(t_pctwtt*100, 90.90));

   END LOOP;

end;

/

Listing 9 – Code to derive "Top 5 timed events" directly from STATSPACK data

In the first section, we derive the total time spent on all non-idle events, followed by time spent in the CPU for the time period between the two snapshots listed. We deliberately kept this simple so that you can build further on it. You might use this to alert yourself by executing an analysis immediately after a STATSPACK snapshot is captured so that you can then research the individual SQL statements or sessions that contributed to the issue. Alternately, you might store these in your custom tables for later reporting. In case you are alerted, you can then use the examples shown in the previous sections to determine the sessions and their SQL statements. 

In the previous listing 8, the top event was 'CPU Time' which was a result of long running CPU-intensive queries. We then had to continually monitor SQL statements at the same time and look at long running, CPU intensive SQLs. This part had to be done manually, as did issuing the recommendations to Development. But we did go from a finding of "SQL statements consuming significant database time were found" along with its impact (the percentage time spent) and issued a recommendation of "SQL Tuning", exactly what ADDM reports in this particular case, albeit automatically.

The weakness of this particular approach is that such STATSPACK based analysis is normally after-the-fact and some essential data may be lost. You can mitigate this by modifying the earlier examples to capture all information, keeping in mind the overhead involved. I would suggest using a middle ground – keep all these scripts ready, and switch them on for a period when you encounter an issue. AWR/ADDM is somewhat deficient in this case in that they collect such information all the time regardless of whether there is an issue or not.
Server Generated Alerts (SGA) revisited
We mentioned earlier that Metrics are collected continually by Oracle Database 10g and Server Generated Alerts (SGA) are then raised based on anything that the Oracle kernel decides is an excessive rate of occurrence. We will provide some code that simulates this functionality and determine how this can be used. Where as STATSPACK analysis (and ADDM analysis for that matter) is an after-the-fact look at issues, these alerts are raised as they occur, so we need to determine a way of doing that as it occurs. The Metrics views (on which the SGA depend) are based on a number of internal performance views that includes the well known V$SYSTEM_EVENT and V$SYSSTAT views that record the current system wide wait and system-wide statistics from startup until this point of time. If we can compare in-memory snapshots of these views and deduce the rate of change of certain metrics, it is possible to simulate such alerts. Listing 10 provides some code that can determine such a snapshot.
rem

rem   Script:           cr_xxdba_pack.sql

rem

rem   Author:           John Kanagaraj (major parts adapted from Jonathan Lewis)

rem

rem   Dated:            April 2004 (Original March 2001)

rem

rem   Purpose:          DBA's set of packaged code

rem

rem

rem   Notes

rem   Has to be run by SYS to create the package; Requires STATSPACK$IDLE_EVENT

rem

rem   Usage:

rem         set serveroutput on size 1000000 format wrapped

rem         set linesize 120

rem         set trimspool on

rem

rem         For system level snapshots

rem         execute xxdba_pack.start_sys_snap;

rem         -- let the database do something

rem         execute xxdba_pack.end_sys_snap;

rem

create or replace package sys.xxdba_pack as

      procedure start_sys_snap;

      procedure end_sys_snap;

end;

/

create or replace package body sys.xxdba_pack as

target_sid integer;

cursor sys_stat is

      select indx,ksusdnam, ksusgstv

      from x$ksusgsta

      where ksusgstv != 0;

cursor sys_evt is

        select

                s.indx          indx,

                d.kslednam      event,

                s.ksleswts      total_waits,

                s.kslestmo      total_timeouts,

                s.kslestim      time_waited,

                s.kslesmxt      max_wait

        from

                x$kslei s, x$ksled d

        where   s.indx = d.indx

        and     s.ksleswts != 0

        and     d.kslednam not in (

                select event from perfstat.stats$idle_event

                )

        order by

                d.indx

        ;

      type sys_stat_type is table of sys_stat%rowtype index by binary_integer;

      sys_stat_list sys_stat_type;

      type sys_evt_type is table of sys_evt%rowtype index by binary_integer;

      sys_evt_list sys_evt_type;

      m_sys_start_time      date;

      m_sys_start_flag      char(1);

      m_sys_end_time  date;

procedure start_sys_snap is

begin

      m_sys_start_time := sysdate;

      for r in sys_stat loop

            sys_stat_list(r.indx).ksusgstv := r.ksusgstv;

      end loop;

      for i in sys_evt loop

            sys_evt_list(i.indx).event := i.event;

            sys_evt_list(i.indx).total_waits := i.total_waits;

            sys_evt_list(i.indx).total_timeouts := i.total_timeouts;

            sys_evt_list(i.indx).time_waited := i.time_waited;

            sys_evt_list(i.indx).max_wait := i.max_wait; 

      end loop;

end start_sys_snap;

procedure end_sys_snap is

begin

      m_sys_end_time := sysdate;

      dbms_output.put_line('---------------------------------');

      dbms_output.put_line('System stats  - ' ||

                        to_char(m_sys_end_time,'dd-Mon hh24:mi:ss')

      );

      dbms_output.put_line('Interval:-  '  ||

                        trunc(86400 * (m_sys_end_time - m_sys_start_time)) ||

                        ' seconds');

      dbms_output.put_line('---------------------------------');

      dbms_output.put_line(

            rpad('Name',60) ||

            lpad('Value',18)

      );

      dbms_output.put_line(

            rpad('----',60) ||

            lpad('-----',18)

      );

      for r in sys_stat loop

            if (not sys_stat_list.exists(r.indx)) then

                sys_stat_list(r.indx).ksusgstv := 0;

            end if;

            if (

                   (sys_stat_list(r.indx).ksusgstv != r.ksusgstv)

            ) then

                  dbms_output.put(rpad(r.ksusdnam,60));

                  dbms_output.put(to_char(

                        r.ksusgstv - sys_stat_list(r.indx).ksusgstv,

                              '9,999,999,999,990')

                  );

                  dbms_output.new_line;

            end if;

      end loop;

      dbms_output.new_line;

      dbms_output.put_line('---------------------------------');

      dbms_output.new_line;

      dbms_output.put_line(

            rpad('Event',30) ||

            lpad('TotalWaits',12) ||

            lpad('TotTmOuts',12) ||

            lpad('TimeWaitd',12) ||

            lpad('MaxWait',12)

      );

      dbms_output.put_line(

            rpad('------',30) ||

            lpad('-----------',12) ||

            lpad('-----------',12) ||

            lpad('-----------',12) ||

            lpad('-----------',12)

      );

      for i in sys_evt loop

            if (not sys_evt_list.exists(i.indx)) then

                sys_evt_list(i.indx).event := '';

                sys_evt_list(i.indx).total_waits := 0;

                sys_evt_list(i.indx).total_timeouts := 0;

                sys_evt_list(i.indx).time_waited := 0;

                sys_evt_list(i.indx).max_wait := 0;

            end if;

            if ((sys_evt_list(i.indx).total_waits != i.total_waits)) then

                  dbms_output.put(rpad(i.event,30));

                  dbms_output.put(to_char(

                   i.total_waits - sys_evt_list(i.indx).total_waits,

                              '999,999,990')

                  );

                  dbms_output.put(to_char(

                   i.total_timeouts - sys_evt_list(i.indx).total_timeouts,

                              '999,999,990')

                  );

                  dbms_output.put(to_char(

                   i.time_waited - sys_evt_list(i.indx).time_waited,

                              '999,999,990')

                  );

                  dbms_output.put(to_char(

                   i.max_wait - sys_evt_list(i.indx).max_wait,

                              '999,999,990')

                  );

                  dbms_output.new_line;

            end if;

      end loop;

end end_sys_snap;
end xxdba_pack;

/

$ cat snap_sys.sql  --- SQL script used to invoke this snapshot
accept secs_to_snapshot prompt 'Please enter no. of seconds between snapshots : '

set serverout on size 1000000

execute xxdba_pack.start_sys_snap;

execute dbms_lock.sleep(&&secs_to_snapshot)

execute xxdba_pack.end_sys_snap;

undefine secs_to_snapshot
Listing 10 – Code that can be used to report the snapshot difference in V$SYSSTAT and V$SYSTEM_EVENT for a period

Let me right at the beginning acknowledge that the idea and the basic structure for this code originated from Jonathan "CBO" Lewis. Simply put, the 'start_sys_snap' procedure uses a set of cursors to instantiate in-memory snapshots of V$SYSTEM_EVENT and V$SYSSTAT values using a PL/SQL table. A specified number of seconds later, the 'end_sys_snap' procedure kicks in, compares the existing values from V$SYSTEM_EVENT and V$SYSSTAT against the previously stored values and reports the difference in values. (Please note that this can be adapted very easily for taking a snapshot of a session's activities – I do have it but haven't included that code here). The results are best illustrated using an actual example report shown in Listing 11.
03:46:01 SQL> @snap_sys
Please enter number of seconds between snapshots : 30

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

---------------------------------

System stats  - 01-Dec 03:50:21

Interval:-  31 seconds

---------------------------------

Name                                                                     Value

----                                                                     -----

logons cumulative                                                           34

logons current                                                              -1

opened cursors cumulative                                                2,516

opened cursors current                                                     -67

user commits                                                               211

user rollbacks                                                               4

user calls                                                               4,318

recursive calls                                                        283,055

recursive cpu usage                                                      7,102

session logical reads                                                7,523,432

CPU used when call started                                               6,781

CPU used by this session                                                 8,824

<snip – cut out irrelevant data>

db block gets                                                          254,833

consistent gets                                                      7,270,588

physical reads                                                          85,521

db block changes                                                        41,170

consistent changes                                                      18,416

physical writes                                                          1,078

physical writes non checkpoint                                           1,065

<snip>
redo entries                                                            20,645

redo size                                                            4,630,604

redo wastage                                                            71,012

redo writes                                                                283

redo blocks written                                                      9,664

redo write time                                                            210

data blocks consistent reads - undo records applied                     18,198

no work - consistent read gets                                       1,972,837

<snip>
table scans (short tables)                                              55,748

table scans (long tables)                                                    7

table scan rows gotten                                               2,356,966

table scan blocks gotten                                               143,332

table fetch by rowid                                                 3,825,394

table fetch continued row                                              208,480

<snip>
parse time cpu                                                             235

parse time elapsed                                                         271

parse count (total)                                                      3,420

parse count (hard)                                                          19

execute count                                                          102,984

bytes sent via SQL*Net to client                                       897,927

bytes received via SQL*Net from client                                 844,937

SQL*Net roundtrips to/from client                                        4,723

sorts (memory)                                                           1,990

sorts (rows)                                                            20,111

session cursor cache hits                                                1,435

session cursor cache count                                                -229

cursor authentications                                                       2

buffer is pinned count                                              11,928,248

buffer is not pinned count                                           5,904,527

---------------------------------

Event                           TotalWaits   TotTmOuts   TimeWaitd     MaxWait

------                         ----------- ----------- ----------- -----------

latch free                           1,345       1,293       2,435           0

control file parallel write             10           0           9           0

buffer busy waits                      589           0         508           0

log file parallel write                284           0         209           0

LGWR wait for redo copy                  3           0           0           0

log file sync                          107           0          85           0

db file sequential read             21,885           0       5,560           0

db file scattered read               9,926           0       9,532           0

db file parallel write                  58           0           0           0

file open                              173           0           5           0

SQL*Net more data to client            274           0           5           0

SQL*Net more data from client           30           0          34           0

SQL*Net break/reset to client            6           0           0           0

PL/SQL procedure successfully completed.

Listing 11 – Actual report of a snapshot during a high load period
As you can see from this report, it is apparent that in a 30 second period when this system-wide snapshot was taken, a large portion of time was spent in latching and in File I/O as per the System_event section. This is borne out by the system statistics section. So what does the former show as an excessive rate? It is apparent that 283,055 recursive calls within a half-minute, which works out to about 9,400 recursive calls per second is excessive. This resulted in 7.5 million logical reads (LIO) or about 250,000 LIOs per second, and consumed 7,102 out of the 8,824 CPU units spent. An analysis of the currently executing programs showed that a user had launched multiple Oracle Application concurrent reports in parallel. Each invocation of this report executed a single, small SQL statement that performed a lookup of a small table recursively for each one of the thousands of rows selected by the main report query. This was the result of inefficient coding, and we were then able to determine and confirm this by tracing just one of the reports. We were able to quickly narrow down the cause based on this 'alert' which simulates the Server Generated Alerts from Oracle Database 10g.
It is quite a simple matter to script this system level snapshot into an alerting script. You can extend this concept by creating a static table that records a baseline rate that is checked say every minute or 5 minutes for the rate at which some of these events occur. We have highlighted a few in the list above. This includes rates for logins, redo generation, physical I/O, logical I/O, latching, parsing CPU (compared to total CPU) etc. 

So what is missing?

It is obvious from our descriptions that Oracle Database 10g has all this functionality inbuilt in itself and these are configured automatically "out-of-the-box". As well, Oracle provides both support and upgrades for this functionality. In the case of the older versions, we will have to build and maintain these functions ourselves. The overheads for collection in Oracle Database 10g are pretty low and are spread out to two special background processes, whereas the home built versions will suffer some overhead. The main deficiency is that a lot of the analysis is automatically performed in Oracle Database 10g, whereas in the earlier versions, we will have to still draw upon some expert experience and advice for interpretation and analysis. It is also very difficult to obtain the single, synoptic view that the AWR/ASH/ADDM framework provides in Oracle Database 10g, but we can come as close as possible to this functionality in the older versions using these techniques.

Conclusion

It is clear from these examples and code snippets that it is possible to back port a number of "automatic" features of ADDM (Automatic Database Diagnostic Monitor), AWR (Automatic Workload Repository), ASH (Active Session History) and Server Generated Alerts (SGA) to older versions such as Oracle 8i and 9i. Central to doing is an understanding of the internal workings of both the Oracle Database 10g and the same workings of the older Oracle 9i and 8i versions. Books such as the one I have written (and I am not alone here!) will certainly help in providing this information in a succinct, clear manner. While there are many features that can be back-ported, many of them cannot. We have clearly explained the groundwork required to do this, and have hinted that many of these steps can be automated. This automation of course is an exercise left to you! I hope that you are able to build on this and later share with me (and the community) any code that extends and implements what we have learnt in this paper.
About the Author

John Kanagaraj is a Principal Consultant with DBSoft Inc., and resides in the Bay Area in sunny California. He has been working with various flavors of UNIX since ’84 and with Oracle since ’88, mostly as a Developer/DBA/Apps DBA and System Administrator. Prior to joining DBSoft, he led small teams of DBAs and UNIX/NT SysAdmins at Shell Petroleum companies in Brunei and Oman. He started his Troubleshooting career as a member (and later became head) of the Database SWAT/Benchmarking team at Wipro Infotech, India. His specialization is UNIX/Oracle Performance management, Backup/recovery and System Availability and he has put out many fires in these areas along the way since ’84! He recently co-authored the "Oracle Database 10g: Insider Solutions" book published by SAMS. John is also the Associate Editor of IOUG’s SELECT Journal and has written many articles for IOUG's SELECT and OAUG's Insight Quaterly journals and even the SQL Server Magazine! John has presented interesting papers at IOUG and OAUG and always seeks to inspire budding writers and DBAs. John can be reached via email at ‘ora_apps_dba_y@yahoo.com’ or off his web page at http://www.geocities.com/john_sharmila.


7





Paper 206


