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Part 1: Introduction
  Oracle Streams is a powerful and flexible data replication utility. It is generally easy to get Streams set up and running; but ongoing maintenance of a Streams environment presents a number of challenges. In particular, keeping Streams replication running “smoothly” during periods of intensive DML activity can sometimes be quite problematic. 
  This paper will describe some of the issues and complications that I have directly encountered with Streams; along with some recommendations on how to avoid / resolve those issues.

  Streams is an extremely large, complex utility; and as a result, the scope of this document is necessarily limited. The following items should be noted about the information contained in this paper:
· The information in this paper applies to Oracle version 10.2. Previous versions of Oracle (especially 9.2) had much different implementations of Streams, so the information presented here might not apply to other versions.
· The information presented here has been gathered in “standard” Streams environments; i.e., local capture, no data transformation, etc. More “exotic” Streams environments (downstream capture, directed networks, etc.) present a number of additional challenges, which will not be covered here. 
· Finally, the subject of “conflict resolution” is a large, complex topic of its own, and will not be covered here.
Part 2: Overview of Streams

  This section will provide a basic overview of Streams – which is needed in order to be able to troubleshoot and resolve any Streams issues.

  Streams has the ability to replicate both DML and DDL changes to objects in another database (or to other objects within the same database.) You decide, via “rules,” which changes are replicated. For example, you could specify that three specific tables are replicated, or that all of the objects in one schema are replicated, etc.
  There are three main processes in Streams environments: Capture, Propagate and Apply. Basically, the capture process reads changes, the propagate process copies changes, and the apply process writes changes.

  Here is a simple diagram of a “typical” Streams environment. This example environment replicates changes from database A to database B, and from database B to database A:
            Capture -> Propagate -> Apply      
Database A                                 Database B
            Apply <- Propagate <- Capture            
The Capture Process Steps
Capture Change -> Generate LCR -> Enqueue Message 

Capture Change: The capture change step reads changes from redo logs. All changes (DML and DDL) in redo logs are captured – regardless of whether Streams is configured to replicate any given change. This is presumably because the capture process does not have any way of knowing, ahead of time, if a new entry in a redo log should be replicated.
Generate LCR: This step examines each captured change, and determines if Streams is configured to “handle” that change or not (i.e., if Streams should replicate that change). If so, then this step converts that change into one or more “logical change records”, or “LCRs”.
Enqueue Message: This step places previously-created LCRs onto the capture process’s queue. This work is performed by “q00n” background workers, and by the QMNC (Queue Monitor Coordinator) process.
The Propagate Process Steps
Source Queue -> Propagate Process -> Destination Queue 
  The propagate process copies messages from a source queue to a destination queue. These transfers are done by the j00n (job queue) background processes.
  Note that some Streams environments are configured to have only one queue – and that one queue is “shared” by the capture and apply processes. In that type of environment, there is no propagate process at all – because the whole purpose of the propagate process is to copy messages between different queues.
The Apply Process Steps
Dequeue Message -> Apply Message

Dequeue Message: This step removes (dequeues) messages from the destination queue. This is done by the apply “reader” process.
Apply Message: This step applies (writes) the contents of a dequeued message to the destination objects. This step is performed by apply “server” process(es).
LCR Concepts
  An LCR is one particular type of Streams message – it is the type that is formatted by the Capture process (i.e., by “implicit” capture.)  There are two types of LCRs: “DDL” LCRs and “row” LCRs. A DDL LCR contains information about a single DDL change. A row LCR contains information about a DML change to a single row. 

  The above point about row LCRs is important to note – because it means that transactions that affect multiple rows will cause multiple LCRs to be generated. For example, a single update statement, which affects 10 million rows, will cause at least 10 million separate LCRs to be generated! All of those LCRs will then have to be propagated and applied individually. 
  Needless to say, this “multiple LCRs per transaction” issue is an important factor to be aware of, when troubleshooting Streams performance issues. (This will be covered in detail later.)

LOB Issues
  The issue of DML statements generating multiple LCRs is even more “severe”, if a replicated table contains any LOB datatypes. Basically, LOB datatypes can cause multiple LCRs to be generated per row affected! From my experience, if a table contains any LOB datatypes, then it is possible for two LCRs (rather than one) to be generated, per row affected – depending on the type of DML being executed on the table.
  Inserts into tables with LOBs will always cause multiple LCRs to be generated per row. Updates into those tables might cause multiple LCRs to be generated, if any of the LOB columns are updated. Deletes will never generate multiple LCRs – deletes always generate 1 LCR per row, regardless of the presence of LOB columns.

Other Items to Note
  There are two other items that are important to be aware of, regarding LCRs:

  All of the LCRs that are part of a single transaction must be applied by one apply server. For example, if a transaction generates 10,000 LCRs, then all 10,000 of those LCRs must be applied by just one apply server – no matter how many apply servers are actually running.

  For each transaction, there is one additional LCR generated, at the end of the transaction. If a single transaction deletes 2,000 rows, then 2,001 LCRs will be generated. This item is important to note with regard to the “spill threshold” value (covered later).
“Spill” Concepts
  Normally, outstanding messages are held in buffered queues, which reside in memory. In some cases, messages can be “spilled”; that is, they can be moved into tables on disk. There are three main reasons why this spilling can occur:
· The total number of outstanding messages is too large to fit in a buffered queue;
· A specific message has been held in a buffered queue for too long;
· The number of messages in a single transaction is larger than the “LCR spill threshold” value. (That value is covered in more detail later.)

Types of Spill Tables
There are two types of tables that can hold “spilled” messages:

· “Queue” tables: each buffered queue has a “queue table” associated with it. Queue tables are created at the same time as buffered queues. Basically, when you create a buffered queue, you specify the name of the new buffered queue, and you also specify the name of the queue table that will be associated with that buffered queue.

Oracle actually creates a number of additional objects, which are associated with a 

buffered queue, when a buffered queue is created. All of those additional objects have the 
string “AQ$_” prepended to the name that you specified for the queue table.

The name format for the table which will actually hold spilled messages, for a given buffered queue, is as follows:

AQ$_<queue table name that you specified>_P


For example, if you specified a queue table name of “CAPTURE_QUEUE_TABLE”, 

then the name of the table which will actually hold spilled messages for the queue in question would be as follows:

AQ$_CAPTURE_QUEUE_TABLE_P

· The “Spill” table: there is one (and only one) “spill” table, in any database that uses Streams.


The name of the spill table is:


SYS.STREAMS$_APPLY_SPILL_MSGS_PART

As the name implies, the spill table can only be used by apply processes – not by capture processes.

Where are the spilled messages?
  The previous two items discussed reasons why messages can be spilled, and the types of tables that can hold spilled messages. This item will now “relate” those two concepts – i.e., it will specify what table a message will be placed in, based on the reason why the message was spilled:
· If a message is spilled because the total number of outstanding messages is too large, then that message is placed in the associated queue table.

· If a message has been held in memory too long, then that message is placed in the associated queue table.

· If the number of LCRs in a single transaction exceeds the “LCR spill threshold”, then all of those LCRs are placed in the spill table: STREAMS$_APPLY_SPILL_MSGS_PART.

Part 3: Troubleshooting
  There are two basic methods available, to troubleshoot Streams issues (these methods are similar to the methods used to troubleshoot other Oracle issues):
· Query the internal Streams tables and views;
· Search the alert log for messages. (This is particularly useful for capture process issues).

Useful Tables and Views, for Troubleshooting Streams Issues

  The following is a list of tables and views that I have found useful, in troubleshooting Streams issues. This is basically “reference” information (more detailed information can be found in the Streams administration guide):

Capture Process 
streams$_capture_process: lists all defined capture processes

dba_capture: basic status, error info

v$streams_capture: detailed status info

dba_capture_parameters: configuration information
Propagate Process
streams$_propagation_process: lists all defined propagate processes

dba_propagation: basic status, error info

v$propagation_sender: detailed status

v$propagation_receiver: detailed status

Apply Process
streams$_apply_process: lists all defined apply processes

dba_apply: basic status, error info

v$streams_apply_reader: status of the apply reader   
v$streams_apply_server: status of apply server(s)

v$streams_apply_coordinator: overall status, latency info

dba_apply_parameters: configuration information
“Miscellaneous” Tables and Views

v$buffered_queues: view that displays the current and cumulative number of messages enqueued and spilled, for each buffered queue.

sys.streams$_apply_spill_msgs_part: table that the apply process uses, to “spill” messages from large transactions to disk.

system.logmnr_restart_ckpt$: table that holds capture process “checkpoint” information.

Types of Streams Bottlenecks
There are two main types of Streams “bottlenecks”:

Type 1: Replication is completely stopped; i.e., no changes are being replicated at all. In other words, replication is “hung”.
Type 2: Replication is running, but it is slower than the rate of DML; i.e., replication is “falling behind”. 

Capture Process Bottlenecks
  Capture process bottlenecks typically have to do with a capture process being unable to read necessary online or (especially) archive logs. This will result in a “Type 1” bottleneck – that is, no changes will be replicated at all (because no changes can be captured).


Capture “Checkpoints”
  The capture process writes its own “checkpoint” information to its data dictionary tables. This checkpoint info keeps track of the SCN values that the capture process has scanned. That information is used to calculate the capture process’s “required_checkpoint_scn” value. 

  Capture process checkpoint information is primarily stored in the following table: 
SYSTEM.LOGMNR_RESTART_CKPT$

  By default, the capture process writes checkpoints very frequently, and stores their data for a long time. On a very write-intensive system, this can cause the LOGMNR_RESTART_CKPT$ table to become extremely large, very quickly. Of course, one reason why this is important to note is because it can cause that table to “eat up” all of the disk space in its tablespace. (The default tablespace for that table is SYSAUX.)
  The more important reason to be aware of this issue, though, is because the capture process has to read that table very frequently, while it is running. As a result, if that table grows too large (to millions of rows or more, which can easily happen) – then the performance of the capture process can become severely degraded. (I have seen this issue occur myself.)
  The amount of data that is stored in that table can be modified with these capture process parameters:
· _checkpoint_frequency: number of megabytes captured which will trigger a checkpoint. The default value for this parameter is 10 – so every time 10 megabytes of data is captured, checkpoint information is written.

· checkpoint_retention_time: number of days to retain checkpoint information. The default value for this parameter is 60 – so checkpoint information cannot be deleted until the information is at least 60 days old.

  The exact values that those parameters should be set to are dependant on the environment in question. In particular, the values depend on how much disk space is available – both in the capture process’s tablespace, and in the archive log filesystem. (Archive logs must not be deleted, until those logs’ SCNs exist in the capture process’s checkpoint information.) 

  As a general recommendation, though, I would say set the _checkpoint_frequency to 100 meg or higher, and set the checkpoint_retention_time to 7 days or less.


SCN checks
  When a capture process starts up, it calculates its “required_checkpoint_scn” value. This value determines which redo logs must be scanned, before any new transactions can be captured. he capture process needs to do this check, in order to ensure that it does not “miss” any transactions that occurred while it was not running.
  As a result, when a capture process starts up, the redo log that contains that SCN value – 

and every subsequent log – must be present in the log_archive_dest directory (or in online logs).

  If any required redo logs are missing during a capture process restart, then the capture process will permanently “hang” during its startup. As a result, this issue will completely prevent the capture process from capturing any new changes.

  If the required redo log(s) cannot be restored, then the only way to resolve this situation is to completely rebuild the Streams environment. Therefore, it is extremely important to “keep track” of redo logs that the capture process needs, before deleting any logs.

Which archive logs are needed?
  The following query can be used to determine the oldest archive log that will need to be read, during the next restart of a capture process.

select a.sequence#, b.name 
from v$log_history a, v$archived_log b

where a.first_change# <= 

  (select required_checkpoint_scn from dba_capture   

   where capture_name = ‘<capture process name>’)

and a.next_change# > 

  (select required_checkpoint_scn from dba_capture 

   where capture_name = ‘<capture process name>’)

and a.sequence# = b.sequence#(+);

  Note that in some cases, the above query might only display a sequence# value – i.e., the value for the name column might be NULL. In that case, the name of the archive log in question has been “aged out” of v$archived_log; so you will need to determine the name of that log from its v$log_history information (sequence#, thread#, etc).

  Also note that in some cases, the above query might not return any rows. If no rows are returned from that query, then the SCN in question resides in an online log.


Flow Control
  In 10g, the capture process is configured with “automatic flow control”. This feature prevents the capture process from spilling many messages.

  Basically, if a large number of messages build up in the capture process’s buffered queue, then flow control will cause the capture process to temporarily “pause” capturing any new messages, until some messages are removed from the queue. When this happens, the capture process will get into the state called “Paused for Flow Control”.
  The reason why flow control is needed is that the capture process is almost always able to capture messages much faster than the apply process can apply messages. As a result, if the capture process does not have any sort of “brake” on its activity, then during intensive DML, it will wind up spilling a huge number of messages. (This was a severe problem in 9i.)
  A message cannot be removed from the capture process’s queue until one of these items occurs:
·     The message is applied at the destination

·     The message is spilled at the destination

  As a result, one of the two items above needs to occur, before the capture process can resume capturing transactions, after a “Paused for Flow Control” state.
Propagate Process Bottlenecks
  I have heard of a few “Type 2” propagate bottlenecks in some “extreme” environments – that is, environments that have very intensive DML, and which propagate changes over very long distances (thousands of miles).
  The parameters that I have seen make a difference, in resolving propagate-related bottlenecks, are as follows:

· Set the propagate parameter LATENCY to 0

· Set the propagate parameter QUEUE_TO_QUEUE to TRUE (10.2 only).
· Set the init.ora parameter _job_queue_interval to 1.
· Set the init.ora parameter job_queue_processes to 4 or higher.
Apply Process Bottlenecks
  Apply process bottlenecks usually deal with the apply process not “keeping up” with the rate of DML being executed on the source tables. Note that I have generally only seen apply bottlenecks with “batch”-style DML (as opposed to “OLTP”-style DML). The three main areas to be concerned with, regarding apply process bottlenecks, are as follows:

· Commit frequency;
· Number of apply servers;
· Other Streams parameters.

Commit Frequency
  The number of rows affected per transaction has an enormous impact on apply performance:

· The number of rows affected per transaction should not be too large – due to spill, and to the “one apply server per transaction” restriction. 

If the number of rows per transaction is larger than the “spill threshold”, then all of the associated LCRs will have to be spilled to the spill table, before any of those LCRs can be applied – and that severely degrades replication performance. Also, all of the LCRs that are associated with a single transaction must be applied by one apply server process (no matter how many are running) – so if the number of rows per transaction is too high, then you will not be able to use parallel apply servers very efficiently.
· The number of rows affected per transaction should not be too small, either – due to DML degradation, and to apply transaction overhead.
If the commit frequency is too low (such as, committing after every row) then the performance of the original DML statement will be severely degraded – and of course, that will degrade the overall replication throughput. Also, there appears to be some “overhead” associated with the apply process starting and stopping transactions, so the number of transactions should not be too high (to minimize the effect of the overhead).
  From my experience, to obtain the best overall throughput – without significantly degrading the original DML – the commit frequency should be in the range of about 500 rows. That is, commits should be issued for about every 500 rows changed. Of course, this value is only a guide – you definitely need to test various commit frequencies yourself, in your own environments, to determine what commit frequency works best in any given environment.

Number of Apply Servers
  The number of parallel apply servers that are defined also has an enormous impact on the apply process’s performance. The number of parallel apply servers is set by the apply process’s “PARALLELISM” parameter.

  From my experience, for best overall throughput, the PARALLELISM parameter should be set to at least three times the number of CPUs that exist on the host machine. This will allow the maximum number of apply servers to be executing transactions, during intensive DML activity.
  Note that setting PARALLELISM that high can potentially “eat up” all of the CPU cycles on the host machine, during intensive DML activity – because the apply server processes will be very busy during intensive DML. (During periods of low DML activity, the apply server processes will be mostly idle.) It is certainly possible to “throttle back” the CPU cycles used by the apply process, by setting the PARALLELISM parameter to a lower value, if needed.

Other Streams Parameters
Several other Streams-related parameters can also have an effect on apply performance:

· Apply process parameter _HASH_TABLE_SIZE:  set this relatively high (such as 10000000), to minimize “wait dependency” bottlenecks.
Basically, the default value of _HASH_TABLE_SIZE is simply not large enough, to allow multiple apply servers to execute transactions concurrently. If you have multiple apply servers, and if you use the default value for _HASH_TABLE_SIZE, then you will frequently see situations in which only one apply server is executing transactions – because all of the other servers are in a “wait dependency” state! Setting the _HASH_TABLE_SIZE value to 10 million or more appears to minimize this issue.
· Apply process parameter TXN_LCR_SPILL_THRESHOLD: set to be a little 

bit higher than the maximum number of rows affected per transaction, to prevent spill.
The reason why that parameter needs to be set a bit higher than the number of rows affected is due to the one “extra” LCR that is generated at the end of a transaction. As mentioned previously, if a delete statement affects 2,000 rows, then 2,001 LCRs will be generated – and that “extra” LCR counts towards the TXN_LCR_SPILL_THRESHOLD limit! So, it is important to be aware of that extra LCR, when setting this parameter.
· Init.ora parameter aq_tm_processes: set to 1.
Note that the aq_tm_processes parameter is “depreciated” in 10g – so that it should not need to be set explicitly at all. However, if that parameter is set, then it will affect the behavior of the “queue monitor coordinator” (qmnc) process. In particular, if that parameter is set to 0, then the qmnc process will be deactivated! This will cause severe problems for the Streams environment. (I have seen several situations in which that parameter was set to 0 – and that caused replication to completely “hang” – permanently.) So, to be “safe”, I explicitly set this parameter to 1 – and I add comments in the init.ora file, which state that that parameter must be set to 1.

“Turning Off” Streams
  As mentioned previously, apply bottlenecks generally occur with “batch”-style DML (as opposed to OLTP-style DML). As a result, the last several sections have discussed modifications which can be made – both Streams modifications, and batch job modifications – to allow batch DML to run efficiently in Streams environments.
  It turns out that there is another method available, to allow batch DML to run efficiently – without having to implement the above modifications. Basically, it is possible to configure a database session so that Streams will not capture any DML from that session – and therefore, that session’s DML will not be propagated or applied. 

  This technique allows batch-style DML to be run at each Streams database individually – rather than running the batch DML in one database, and then having that DML get replicated to all of the other Streams databases. 

  “Turning off” Streams in a session is done by setting the session’s “Streams tag” to a non-NULL value. Here is an example of turning Streams off before a batch statement, and then turning Streams back on afterwards:
exec dbms_streams.set_tag (tag => hextoraw(’01’));
<batch DML statement>
commit;
exec dbms_streams.set_tag (tag => NULL);

  Note: this technique will only work if the “include_tagged_lcr” parameter, in the Streams capture rules, is set to FALSE. (FALSE is the default value for that parameter in Streams rules.)
  I have used this technique very effectively in Streams environments, to allow regularly-scheduled batch jobs to run without problems. The only item to be aware of with this technique is that you must ensure that the batch job in question gets executed in all of the Streams databases – because otherwise, the data in your databases will immediately become “out of sync”.


Apply Process Aborts
  If there are any triggers on any replicated tables, then the apply process can sometimes abort – and not restart – during periods of intensive DML activity. These aborts happen most frequently when one particular apply server becomes “overloaded”, and has to run too much recursive SQL (triggers cause recursive SQL, of course). 

  This issue is caused by Oracle bug # 4712729. This bug is apparently fixed in 10.2.0.3; and there are “backport” patches available for 10.2.0.1 and 10.2.0.2.

Part 4: Conclusion
  As listed above, maintaining a Streams environment can present a number of challenges; particularly in environments that have very intensive DML activity. However, the challenges in question are not insurmountable – it is definitely possible to configure a Streams environment so that it can handle very heavy DML loads. 

  The main item to note is that a “default” Streams environment – i.e., an environment which uses all of the default values, for all of the various Streams parameters – will definitely not be able to “keep up” with any significant DML activity.
  As a result, the real challenge for the Streams administrator is to identify which Streams areas need to be “customized”, in order to allow Streams to handle the DML load in any given environment. Hopefully, the information provided in this paper will assist Streams administrators in that task. 





















