
Developing High Class UML Class Models

Jeff Jacobs
Covad Communications

jmjacobs@jeffreyjacobs.com

Copyright 2006, Jeffrey M. Jacobs

Survey

Who is familiar with UML class models?
Who creates class models?
Who reads/reviews class models?
Developers?
Modelers?
Analysts?
Architects?
Familiar with “logical” E/R modeling techniques?

Copyright 2006, Jeffrey M. Jacobs

Agenda

Why model?
Rantings of a lunatic presenter
Quick review of UML class constructs
Rules, guidelines, recommendations
Summary

Copyright 2006, Jeffrey M. Jacobs

Disclaimer

The views presented here are those of the presenter
and do not represent those of:

Oracle
ODTUG
Authors of any UML books
Any standards group
Any other internationally recognized self proclaimed UML
guru

Copyright 2006, Jeffrey M. Jacobs

Presenter Biases

Presenter is biased toward
Completeness
Understandability
Correctness
Communication with non-technical parties
Using appropriate tools and techniques
Disciplined thinking
Modeling as a process

E/R quality tests and metrics are directly applicable
to class models!

Copyright 2006, Jeffrey M. Jacobs

Why do we model?

Understand the world/domain/issue
Create a representation of reality
“Requirements”
Generate code
Design database
Design code

Copyright 2006, Jeffrey M. Jacobs

What are we addressing?

Classes for “analysis” (not code design)
Requirements
“Data”
“Real world”
Architecture
“Domain”

Classes
Associations
Not attributes, methods or responsibilities
Not code design or reverse engineering

Copyright 2006, Jeffrey M. Jacobs

The Rants of a Lunatic Presenter

Most UML class diagrams
are:

Sloppy
Imprecise
Incorrect
Incomplete
Misleading

Do not accurately reflect
The “real” world
Needs of the business

Barely understandable

Copyright 2006, Jeffrey M. Jacobs

Why?

Most class models are created by “system”
architects” or developers

Many architects aren’t
Constant confusion of “modeling” with
implementation
Class models used for anything and everything
No fundamental theory or good practices

(unlike E/R modeling)
Too many constructs in toolbox

Notation by acquisition
“If it’s there, I should use it”

Copyright 2006, Jeffrey M. Jacobs

Class Basics

Classes (boxes)
Similar to entities

Classes have attributes and operations (methods)
Associations (lines)

“relationships”
Navigation

Association can only be traversed in one direction
Dependency
Generalization (inheritance)
Aggregation
Composition

Copyright 2006, Jeffrey M. Jacobs

Class Basics

Association may have “adornments”
Name
Role
Multiplicity
Aggregation
Composition

Association classes
Hybrid between classes and associations

Copyright 2006, Jeffrey M. Jacobs

The Problem

Man Woman

What does this mean?

Copyright 2006, Jeffrey M. Jacobs

What is Quality?

Understandable to all interested parties
Unambiguous
“Complete”
Correct
Appropriate level of abstraction

Copyright 2006, Jeffrey M. Jacobs

A Line is Just a Line

Man Woman

Copyright 2006, Jeffrey M. Jacobs

But a Relationship is a Thing of Beauty

Man Woman0..1

spouse of

0..1

married to

Copyright 2006, Jeffrey M. Jacobs

Rule 1 – Explicit Multiplicity

Pop Quiz!
Is

0..1
1..1

1 My Class

Copyright 2006, Jeffrey M. Jacobs

Rule 1 – Explicit Multiplicity

Pop Quiz!
Is

0..1
1..1

Is
0..*
1..*

Explicit is better
Everybody is clear

1

* My Class

My Class

Copyright 2006, Jeffrey M. Jacobs

Rule 2 – Name that Association

Associations may have one “association name or a
role name for each end of the association (or both)”

Man Woman0..1
0..1marriage

spouse of
married to

Copyright 2006, Jeffrey M. Jacobs

Rule 2.1a – Use for Association Names

Who sends/receives?

Server Client1..1 receives from 0..*

Copyright 2006, Jeffrey M. Jacobs

Rule 2.1a – Use for Association Names

Server Client1..1 receives from 0..*

Copyright 2006, Jeffrey M. Jacobs

Roles Preferred

Roles preferred
Reduces ambiguity
Easier to read in both directions

Server Client1..1

receives from

0..*

sends to

Copyright 2006, Jeffrey M. Jacobs

Rule 3 – Use “Good” Names

ProductComponent

ResourceService

LogicalResourceResourceFacingService

0..1 1..n0..1 1..n

LogicalResourcesImplementRFS

ProductBundle

CustomerFacingService

0..n1..n 0..n1..n

CFServiceRequiresRFServices

PhysicalResource

0..n0..n 0..n0..n

PResourceSupportsLResource

0..1 1..n0..1 1..n

PhysicalResourcesHostRFS

Product
0..n0..n 0..n

ProductReferences

0..n

0..1

0..n

0..1

0..n

ProductBundleComprisedOf

0..n

0..1

0..n

0..1

ProductHasCustomerFacingServices

0..n

0..1

0..n

0..1

ProductHasPhysicalResources

Copyright 2006, Jeffrey M. Jacobs

Rule 3.1 – Understandable and Readable

married to/spouse of

Copyright 2006, Jeffrey M. Jacobs

Rule 3.1 – Understandable and Readable

married to/spouse of
provided by

Copyright 2006, Jeffrey M. Jacobs

Rule 3.1 – Understandable and Readable

married to/spouse of
provided by
Avoid
ReallyLongNamesWithCapitalizationBecauseTheyAreHardToReadByMortals

Use spaces or underscores (CTW), because
Really long names with capitalization they are hard to read by mortals

Copyright 2006, Jeffrey M. Jacobs

Rule 3.1 – Understandable and Readable

married to/spouse of
provided by
Avoid
ReallyLongNamesWithCapitalizationBecauseTheyAreHardToReadByMortals

Use spaces or underscores (CTW), because
Really long names with capitalization are hard to read by mortals

Avoid redundancy and confusing/meaningless names:

Product Offering Product SpecificationProdOfferingReferencesProdSpec

Copyright 2006, Jeffrey M. Jacobs

Rule 3.2 – Include
Definitions/Descriptions/Comments of Classes
and Attributes

The diagram is not the model
It is only a representation

Class names are seldom sufficiently descriptive

Copyright 2006, Jeffrey M. Jacobs

Rule 4 – Use E/R Reading Conventions

0.. = “May Be”
1.. = “Must Be”
Helps ensure correctness of optionality

Enforces “discipline” and consistency
More acceptable to non-techies than “zero or more”

Whichever reading technique you choose…
Be Consistent!!!

Copyright 2006, Jeffrey M. Jacobs

Rule 5 – Resolve Many to Many
Relationships

SimpleProductOffering

ProductOfferingPrice
name
descript ion
validFor : TimePeriod

BundledProductOffering

ProductSpecification
(from Product Spe cificati on ABE)

MarketStrategy
(from M arket S trategy & Pl an ABE)

MarketSegment
(f rom Market Segment ABE)

Dist ributionChannel
(from Sales Channel ABE)

ProductCatalog
0..n 0..n0..n 0..nProdCatalogAvailab leVia

ProductOf fering
id
name
description
validFor : TimePeriod
status

0..n0..n 0..n0..n

ProdOfferValuedByPrice

0..n

0..n

0..n

0..n

BundledProdOfferComprisedOf

1 0..n1 0..n

ProdSpecMadeAvai lab leAs

0..n

0..n

0..n

0..n

ProdOfferingProvidedBy

0 ..n

0..n

0 ..n

0..n
ProdOfferingSupportedBy

0..n

0..n

0..n

0..n

ProdOfferingTarge tedTo

0..n

0..n

0..n

0..n

ProdOfferingPub licizedIn

Place
(f rom Entit ies)

0..n

0..n

0..n

0..n

ProdOfferingAvailab leIn

Copyright 2006, Jeffrey M. Jacobs

Rule 5 – Resolve Many to Many
Associations

M:M relationships “hide” important detail that must
be discovered
M:M produce brittle implementations
M:M result in weak Object/Relational mappings
M:M relationships should be eliminated by end of
detailed “domain” analysis
Iterative process of refinement

Employee Project
Assigned to Worked by

0..* 0..*

Copyright 2006, Jeffrey M. Jacobs

Resolving Many to Many Associations

To resolve a M:M association:
1) Create new class (not an Association Class)
2) Create associations back to original entities
4) Use meaningful names for new entity and relationships
5) Examine new entity for attributes and relationships

Copyright 2006, Jeffrey M. Jacobs

Resolving Many to Many Associations

Create new class
New name is very important!
What would be a good name?

Employee Project
Assigned to Worked by

0..* 0..*

Copyright 2006, Jeffrey M. Jacobs

Name New Class

Usually found in original role/association name!

Employee Project

Subject to Subject of

0..* 0..*Assignment

For To

1..1 1..1

Copyright 2006, Jeffrey M. Jacobs

Examine New Class for Attributes and
Associations

Employee Project

Subject to Subject of

0..* 0..*Assignment

For To

1..1 1..1

Copyright 2006, Jeffrey M. Jacobs

Examine New Class for Attributes and
Associations

Employee
Project

Subject to Subject of

0..* 0..*Weekly Assignment

For To

1..1 1..1

Week Ending
Hours Billed

Copyright 2006, Jeffrey M. Jacobs

Rule 5.1 – Eschew Association Classes

Company Person* 1..*

employer employee

Association classes = “association properties”
“It wouldn’t be appropriate to model this situation with a
Company to Job Association together with a Job to Person
association”

In fact, it would be appropriate!!!

Job

description
date hired
salary

Copyright 2006, Jeffrey M. Jacobs

Rule 5.1 – Eschew Association Classes

Confusing to end users
No real programming language support
No significant (real?) difference from real classes
Can’t be reused

Can’t be attached to more than one association

Copyright 2006, Jeffrey M. Jacobs

Rule 5.1 – Eschew Association Classes

Model as regular classes
Less confusing to business
Leads to better analysis

No need to “convert” if/when a new meaningful
association is discovered

Leads to better code
(Fill in names and multiplicity)

Company PersonJob

Copyright 2006, Jeffrey M. Jacobs

Rule 6 – Avoid Dependencies

“A semantic relationship between two things in which a change to one
(independent thing) may affect the semantics of the other (dependent thing)”
Generally meaningless except in code design

“Input parameters”
“If you provide the full signature, you don’t normally need to show the
dependency”

Course Schedule Course

Copyright 2006, Jeffrey M. Jacobs

Rule 6.1 – Avoid Navigation

Seldom meaningful; usually clear from context
Association roles/naming better and clearer
Constrains implementation

(if anybody pays attention)
Frequently incorrect

SetTopController PowerManager

Copyright 2006, Jeffrey M. Jacobs

Rule 7 – Use Aggregation Sparingly

“Simple aggregation is entirely conceptual and does
nothing more than distinguish a ‘whole’ from a ‘part’”
– The UML User Guide
No real semantics
Easily misused and confused with “composition”

Even the UML User guides mixes them up in the same
chapter!!!

Clearly stated relationships are usually better

Copyright 2006, Jeffrey M. Jacobs

Example (The UML User Guide)

What does “aggregation”
add?
(Tool doesn’t support)

Copyright 2006, Jeffrey M. Jacobs

Rule 8.1 – Be Careful with Composition

Composition has well defined semantics
Existence of child depends on existence of parent

“Cascade delete”
Only one parent allowed
Use only when appropriate

Order Line Item

Copyright 2006, Jeffrey M. Jacobs

Rule 8 - Avoid N-ary Associations

“An association among 3 or more classes”
Abandoned by the ER community years ago in favor
of binary associations

Very confusing
Seldom informative

Represent as a class
There will always be attributes
There will always be more things to discover

Implementation will be a “class” (or table)

Copyright 2006, Jeffrey M. Jacobs

Rule 9 – Be Stingy with Objects

Objects are instances of classes
Seldom appropriate for “analysis”

Elyse

Copyright 2006, Jeffrey M. Jacobs

Rule 9 – Be Stingy with Objects

Use sparingly
Specify class

Elyse:Customer

Copyright 2006, Jeffrey M. Jacobs

Rule 10 - Get the “Optionality” Correct

“1..” vs “0..”
Most common “mistake”

Found in many standard books

If “1..”, then must always be present
Are there any exceptions?
Don’t assume it doesn’t matter; some programmers will
enforce the rule
Most don’t…

Can severely impact data base design if incorrect
Data modelers/database designers will enforce optionality

Copyright 2006, Jeffrey M. Jacobs

Rule 10 - Get the “Optionality” Correct

New department?
New School?
Can’t be chair of more than
one department?

Interim

Copyright 2006, Jeffrey M. Jacobs

Rule Summary

Explicit Multiplicity
Name Associations, preferably with roles
Use meaningful, descriptive names for classes,
associations and attributes
Resolve many to many associations
Eschew

Association Classes
Dependencies
Navigation
N-ary associations

Use Aggregation sparingly

Copyright 2006, Jeffrey M. Jacobs

Rule Summary

Be careful with Composition
Be sure that the semantics are what is truly intended

Don’t confuse with aggregation

Get the optionality correct
Look for exceptions
Be sure the business case is correct and meaningful

Copyright 2006, Jeffrey M. Jacobs

Summary

Class models can be
Understandable
“Rigorous”
Complete
“Correct”

Simple “rules” substantially improve class models
Less confusion and ambiguity
Better communication
More effective
Enforce “disciplined” thinking

E/R discipline and quality techniques can and should be applied
to class models

Copyright 2006, Jeffrey M. Jacobs

Questions and Promo

OPP 2007
February 28 – March 1, 2007

San Mateo Marriott
San Mateo, California

An ODTUG SP* Oracle PL/SQL
Programming Conference

*SP – Seriously Practical Conference

For more information visit www.odtug.com or call 910-452-7444

ODTUG Kaleidoscope
June 18 – 21, 2007

Pre-conference Hands-on Training - June 16 – 17
Hilton Daytona Beach Oceanfront Resort

Daytona, Florida
WOW-Wide Open World, Wide Open Web!

