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FTC Consent Agreements

– Penalty - 20 yrs of bi-annual audits 
by outside security consultants

– Microsoft, Petco, and Guess for 
“deceptive claims” about security

– BJ Wholesale for "unfair" business 
practices of lax computer security 
and major credit card breach in 2004
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Data Breach Lawsuits
• Class action - CA law on "reasonable" 

security for customer information

– CardSystems Solutions ($120M)
– LexisNexis
– ChoicePoint

• Ohio Attorney General - ”Implied 
warranty” to protect consumers info

– DSW Shoe Warehouse
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SQL Injection: What is it

– An attack methodology 
• Allows the attacker to alter SQL statements generated by an 

application (due to the lack of input validation)

• SQL Injection opens up the full semantics of database access 
languages (so the attacker has a LOT of tools available)

– An application is vulnerable to SQL Injection as a result 
of the programming of the application itself

– Built-in database security and traditional network security 
solutions are hard-pressed to correct this issue 

• (we will demonstrate some of the reasons why…)
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SQL Injection: Example 1SQL Injection: Example 1

Authentication Circumvention

The Code:

…
SqlQry = "SELECT * FROM Users WHERE Username = '" &  
Request.QueryString("User") & "' AND Password = '" &  
Request.QueryString("Pass") & "'"

LoginRS.Open SqlQry, MyConn

If LoginRS.EOF Then Response.Write("Invalid Login")
…

When a normal user logs in, the following query is created:
SELECT * FROM Users WHERE Username = ‘John’
AND Password = ‘Smith’

The attacker, however, inserts X’ OR ‘1’=‘1 as the password, altering 
the query into the following (non empty) one:

SELECT * FROM Users WHERE Username = ‘John’
AND Password = ‘X’ OR ‘1’=‘1’

D
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SQL Injection: Example 2SQL Injection: Example 2

Data Retrieval

The Code:
SqlQry = "SELECT * FROM Products WHERE ProdDesc LIKE ”
& “’%” Request.QueryString(“SearchTerm") & “%’”

ProdsRS.Open SqlQry, MyConn

The query that is normally created when using the form is:
SELECT * FROM Products WHERE ProdDesc LIKE ‘%matrix%’

Showing all 
matching results:
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SQL Injection: Example 2SQL Injection: Example 2

Data Retrieval (Continued)
The attacker now uses the following string as the search term:

99'UNION SELECT null, null ,username ||';'|| password 
||';'||ccnumber ||';'|| ccdate, null, null, 0, null 
FROM Users--

Causing the original query to be altered into the following one:
SELECT * FROM Products WHERE ProdName LIKE ‘%99’ UNION 
SELECT null, null, username || ‘ ; ’ || password || 
‘;’ || ccnumber ||';'|| ccdate, null, null, 0, null 
FROM Users --%’

As a result, the query now returns all products whose name terminates 
with ‘99’ (probably none), as well as the list of the users, their passwords, 
and their credit card numbers

D
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Simplest and most common countermeasure Simplest and most common countermeasure 
against SQL Injection

– Achieved by simple configuration options (e.g. 
suppress error messages or set a custom error 
message)

– A classic Security By Obscurity approach 

… why it won’t work …
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exploitation of SQL Injection vulnerabilities
– Eliminates the reliance on error messages

• The attacker employs Boolean tests 
determine whether an error has occurred 
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• Testing for the existence of SQL Injection can 
be done simply by replacing a field with 
equivalent SQL syntax:
– The number 5 can be represented in SQL as (6-1)
– The string ‘test’ can be represented as ‘te’+’st’ (in MS SQL) 

or ‘te’||’st’ (in Oracle)
– A date can be replaced with the database’s date function

• getdate() (MS SQL) or sysdate (Oracle)

• Matching results indicate that the system is 
vulnerable, while an error indicates that the 
syntax was not parsed by an SQL parser
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Targeting the Attack Parameters
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Targeting the Attack Parameters
• Since errors are hidden / identical some form of 

differentiation is required

• Step #1 – Enumerating the number of columns
– Done using an ORDER BY statement, which sorts by specific field
– When an existing field is chosen, the result is sorted according to it. 

However, when a non-existent field is chosen, an error occurs

• Step #2 – Enumerating the type of fields
– Create an initial request with all fields set to NULL
– Type detection is done by guessing one field at a time

• Once field types are known, exploit is trivial
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Blindfolded SQL Injection:
Identifying a Column
Blindfolded SQL Injection:
Identifying a Column
• Union Select null,null,null,null,null,null

– Error = Syntax isn’t right.  We have a type issue.

• It takes some time, but we find the right combo:

• Union Select null,null,null,1,null,null…
– No Error = Syntax & basic typing is right. 

• Union Select 1,null,null,1,null,null…
– No Error = 1st column is integer.
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Countermeasures
Candidate 2: Signature Protection
Countermeasures
Candidate 2: Signature Protection
• Relies on the existing IDS/IPS infrastructure or on an easily 

installed signature protection component
• Attempts to detect common SQL Injection strings such as: 

UNION SELECT, OR 1=1, etc.

BUT

• Signatures can only be practically applied to HTTP traffic
– SQL Injection strings are not different than valid SQL statements.

• Placing strict signatures on keywords such as INSERT, 
SELECT and DELETE, and characters such as ‘, = and -- will 
cause the security mechanism to block valid requests

… why it won’t work …
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SQL Injection Signature EvasionSQL Injection Signature Evasion

• A set of techniques which allow an attacker to 
evade signature protection mechanisms

• Methods include
– Detecting signature protection (EASY)
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– SQL language specific evasion techniques
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SQL Injection Signature Evasion:
Generic Evasion Techniques
SQL Injection Signature Evasion:
Generic Evasion Techniques
• Non-SQL Specific 
• Employs common IDS evasion techniques, such as:

– IP Fragmentation
– TCP Segmentation
– White Space Diversification
– Various Encodings (HTTP/UTF8/Unicode/etc)

• Vulnerability to these techniques is a result of poor 
implementation rather than an inherent problem
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SQL Injection Signature Evasion
SQL-Based Techniques
SQL Injection Signature Evasion
SQL-Based Techniques
• Technique #1 – Value equivalence (instead of OR 1=1)

– OR 'Simple' = 'Simple'
– Make the expression look different but still be the same. 

• Adding N will make the  value an nvarchar:
• OR 'Simple' = N'Simple‘

– Concatenation at the SQL level:
• OR 'Simple' = 'Sim'+'ple‘ (MS-SQL)
• OR ‘Simple’ = ‘Sim’||’ple’ (Oracle)

• What if the signature detection is looking at a much wider 
expression like OR followed by = ?
– OR 'Simple' LIKE 'Sim%' 
– OR 'Simple' > 'S‘

• SQL is a rich toolset: there are unlimited numbers of examples:
– OR 'Simple' IN ('Simple')
– OR 'S' BETWEEN 'R' AND 'T'
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– OR 'Simple' IN ('Simple')
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D
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SQL Signature Evasion
SQL Based Techniques
SQL Signature Evasion
SQL Based Techniques

• Technique #2 – White Space Equivalence / 
Comments
– Used to evade signatures that contain white spaces, such as

• OR 1=1

• UNION SELECT

• EXEC SP_

• Using Comments
– http://localhost/showproducts.asp?CatID=99’UNI/**/ON /**/ 

SE/**/LECT
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SQL Injection Signature Evasion
SQL Based Techniques
SQL Injection Signature Evasion
SQL Based Techniques

• Technique #3 – String Equivalence
– Basic string equivalence is done by executing a 

concatenated string (Most DBs have more than 
one way of doing so), such as:

• ; EXEC('INS‘+'ERT INTO…' 
• ; EXECUTE('INS‘||'ERT INTO…' 

– A possible string equivalence is through its 
hexadecimal representation, allowing the keyword 
SELECT to be represented as 0x73656c656374
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Countermeasures
Candidate 3: DB Access Control Lists (ACLs)
Countermeasures
Candidate 3: DB Access Control Lists (ACLs)

• Least privileges applied to the application account 
• Protects the database against system level attacks that require 

special system privileges, such as the following:

(Oracle examples)
; DROP USER <name>

; DROP TABLE <name>

; GRANT CONNECT, RESOURCES

; SHUTDOWN ABORT

(MS-SQL examples)

; EXEC MASTER.XP_CMDSHELL(‘cmd.exe /e dir’) --

; SHUTDOWN --

; DROP DATABASE MyApp –

… why it won’t (completely) work …
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SQL Injection Denial of ServiceSQL Injection Denial of Service

• A set of techniques to launch Denial of Service 
attacks against databases 
– Direct or through SQL Injection

• Basic SQL DoS techniques require the application to 
be running a privileged user account 

• Advanced techniques allow the attacker to perform 
various destructive activities through a user account 
with limited privileges
– Making the server unavailable
– Corrupting data
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SQL Denial of Service
Data Corruption/Destruction
SQL Denial of Service
Data Corruption/Destruction
• While not a classic DoS attack, Data destruction/corruption may 

often render the application useless
• Recovery time may be significant

– Instead of a reboot, data restoration is required
• Attacker looks for pages which perform DELETE or UPDATE 

statements based on a parameter provided by the user
• Injecting an OR 1=1 (or equivalent) string will cause the query to 

delete or alter the entire contents of the table. 
– For instance, injecting into a password change form:

UPDATE Users SET Password=‘BOGUS’ WHERE Username=‘User’
OR ‘1’=‘1’
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SQL Denial of Service
Resource Consumption
SQL Denial of Service
Resource Consumption
• Resource consumption attacks can be achieved by a read-only 

user 
• Classic DoS: Attacker can prevent others from using the server
• Can be performed through several techniques, such as:

– Creating a very large record set created from a correlated query:

– Executing endless loops:

• Resource consumption attacks can be achieved by a read-only 
user 

• Classic DoS: Attacker can prevent others from using the server
• Can be performed through several techniques, such as:

– Creating a very large record set created from a correlated query:

– Executing endless loops:

BEGIN DECLARE @A INT;
WHILE (1=1) BEGIN

IF (1=2) BEGIN
SET @A = 1;

END
END

END

SELECT A1.*, B1.* FROM A AS A1, B AS B1
WHERE EXISTS (SELECT A2.*, B3.* FROM A AS A2, B AS B3 

WHERE A1.AID = A2.AID)
AND EXISTS (SELECT B2.*, A3.* FROM B AS B2, A AS A3 

WHERE B1.BID = B2.BID)
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Effective CountermeasuresEffective Countermeasures

The Right Solution – Data security in 3 layers

• The Application – Write secure code
– Use Prepared Statements/Parametric Queries
– Use Stored Procedures
– Validate Input (length, type, character set)

• The Database – Apply available features
– Restrict database user permissions
– Impose resource quotas/limit profiles
– Audit database activity and logs

• External Mechanism
– Use solutions that are aware of application context
– Revalidate some of the security tasks such as input validation and logging
– Perform tests on incoming requests and outgoing responses based on 

expected behavior
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Effective Countermeasures: External Mechanism
A Model for Database Security
Effective Countermeasures: External Mechanism
A Model for Database Security
• Dynamic Profiling models appropriate database usage 

– Database objects
• Queries, stored procedures, privileged operations, system objects, etc

– Users
• Auditable trail of user access and activity

– Business activities and transactions
• Prevents rogue users from overstepping permissions

– Time of day and Location
• Reduces “comfort zone” of rogue users attempting malicious operations outside of 

normal work locations or work hours
– Application / Access Method

• Prevents stolen / abused credentials (i.e. rogue user using an application’s credentials)
– Requests per second / Data Consumption Rate 

• Prevents DoS attacks and alerts on inappropriate spikes in data use

• Audit and Secure based on usage dynamics
– Verify real-time usage vs. the baseline
– Audit deviations from baseline
– Enforce baseline (as appropriate)
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Effective Countermeasures: External Mechanism
SQL Profiling
A continuously evolving model of database and application structure, design 
and deployment
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Imperva SecureSphere 
Database Security Gateway
Imperva SecureSphere 
Database Security Gateway
• Assessment

– Models Database Usage
• Dynamic Profiling learns from traffic 
• Automatically generates security policy
• Support manual adjustments to policy

– Identifies Usage Vulnerabilities

• Audit 
– Logs all activity (incl. DBA)
– Identifies activities that matter in real 

time

• Protection
– Alerts (blocks) attacks and policy 

violations
– Stops platform attacks

• Database server software
• Operating system
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Additional InformationAdditional Information

Live Webinars
Register at imperva.webex.com

For more information or a copy of the
“SQL Injection” white paper, 

contact me: 
Mark Kraynak

mark@imperva.com
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