Database Security
The Past, the Present, the
Future

Mark Kraynak

Director of Product Marketing
Imperva

mark@imperva.com

Imperva

Who we are

Venture-backed, privately-owned company with
operations and HQ in the US and Israel

Leadership of Shlomo Kramer
— Check Point co-founder
— Co-developer of Stateful Inspection

— Imperva Co-founder and CEO

Deep expertise In security

— Application, Database and Data Center Security Elite Specialists

 |sraeli Defense Force cyber warfare team

* Private sector application, network, database and data center
penetration testing and security consultants

Imperva ©2006 @ PEH“

Agenda

Intro Demo: SQL Injection
Noteworthy Data Thefts

A Multi-Dimensional Problem
SQL Injection Revisited
Countermeasures Demonstration
Effective countermeasures

Q&A

Imperva ©2006

Data Theft

Publicity & Governmental Action
» Legislation fuels publicity

15 states with security breach laws with 4-10 more expected in 2005

CsSU Breach Exposes 59,000 #wy
(M\I _ to Hackers A

40M credit cards hacked

Breach at third party payment processor affects 22 million
Visa cards and 14 million MasterCards. THE WALL STREET JOURNAL.

B LexisNexis Reveals Further Breaches of
THE WALL STREET JOURNAL. N

DSW Shoe Says Theft of Data
Involved 1.4 Million Credit Cards

Online thieves get personal
nformation on 310,000 in US

washingtonpost.com
FDIC Alerts Employees of Data Breach

7, th

» Publicity fuels more legislation

« 20 more states considering additional security breach legislations
* 10 US Senate bills introduced in 2005 (identify Theft Protection Act)

Imperva ©2006 @

Data Theft

Costs are Real for Businesses

FTC Consent Agreements

— Penalty - 20 yrs of bi-annual audits
by outside security consultants

— Microsoft, Petco, and Guess for
“deceptive claims” about security

— BJ Wholesale for "unfair" business
practices of lax computer security
and major credit card breach in 2004

"There is going to be a flood of lawsuits,"
- former Justice Department prosecutor

Data Breach Lawsuits

Hard Dollar Estimates

« BJ Wholesaler - $16M reserve

« DSW - $6.5M to $9.5M set aside

» Polo Ralph Lauren - $1.6M claimed

» Chipotle's Mexican Grill - $.75M claim

» Class action - CA law on "reasonable”
security for customer information

— CardSystems Solutions ($120M)
— LexisNexis
— ChoicePoint

* Ohio Attorney General - "Implied
warranty” to protect consumers info

— DSW Shoe Warehouse

Imperva ©2006

Source: WSJ 7/21/05 pB1

@iVIPERVA

Database Threats and Vulnerabilities

A multi-dimensional problem

Data Center

* Direct: Database breach internal Users B .
— Internal sources eg‘
— Very high value target a;b /
&?.
.

* Indirect: Web attacks ~ eg‘

— Targeted a’

— External sources
— “Custom” vulnerabilities S

Web Servers
App Servers, Databases

 Platform: Worm infection iﬁ‘
— External and internal % o

Web Database Worm
sourcgs Cookie poisoning Data theft Code Red
— Generic attack Parameter Tampering Data corruption Nimda
etc. X y etc. etc.

SQL Injection

Imperva ©2006 @ mm

SOL Injection: A Pervasive
Attack to Compromise Data

SQL Injection: What is it

— An attack methodology

» Allows the attacker to alter SQL statements generated by an
application (due to the lack of input validation)

« SQL Injection opens up the full semantics of database access
languages (so the attacker has a LOT of tools available)

— An application is vulnerable to SQL Injection as a result
of the programming of the application itself

— Built-in database security and traditional network security
solutions are hard-pressed to correct this issue
* (we will demonstrate some of the reasons why...)

Imperva ©2006 @ PEH“

SQL Injection: Example 1

Authentication Circumvention

équry = "SELECT * FROM Users WHERE Username = "' &
Request.QueryString("User™) & """ AND Password = """ &
The Code: Request.QueryString(''Pass™) & """

LoginRS.Open SglQry, MyConn
IT LoginRS.EOF Then Response.Write("Invalid Login'™)

When a normal user logs in, the following query is created:

SELECT * FROM Users WHERE Username = “John’
AND Password = “Smith’

The attacker, however, inserts x- or <1°=<1 as the password, altering
the query into the following (non empty) one:

SELECT * FROM Users WHERE Username = “John’
AND Password = “X~ “1°=“1"

Imperva ©2006 @ PEH“

SQL Injection: Example 2

Data Retrieval

SqlQry = "SELECT * FROM Products WHERE ProdDesc LIKE ”
The Code: & “’%” Request.QueryString(“SearchTerm'™) & “%””

ProdsRS.Open SqlQry, MyConn

The query that is normally created when using the form is:
SELECT * FROM Products WHERE ProdDesc LIKE * >

Showing all
m at C h i n g r e S u It S : . Hle Edit View Favorites Tools Help

b | Super VEDA - Microsoft Internet Explorer

SuperVeda

One cart. One bill. One shipping. Check Dut

New User? Sign up now! About Us

Logout Hello, Mickey

Home

+ Products

Sales

Search

Track Orders

Add to cart
stack | Add to cart

10 Imperva ©2006 @ PER\A

SQL Injection: Example 2

Data Retrieval (Continued)

The attacker now uses the following string as the search term:

99°"UNION SELECT null, null ,username |]";"]] password
11°;:"]lccnumber |]";"]] ccdate, null, null, 0, null
FROM Users--

Causing the original query to be altered into the following one:

SELECT * FROM Products WHERE ProdName LIKE “%99~ UNION
SELECT null, null, username [[f “ ; ° [[password [[
“c” [[] ccnumber [[~°;][] ccdate, null, null, 0, null
FROM Users --%’

As a result, the query now returns all products whose name terminates
with ‘99’ (probably none), as well as the list of the users, their passwords,
and their credit card numbers

11 Imperva ©2006 @ PER\A

Countermeasures:
Common Approaches That Don’t Work

13

Counter_measures 1t
Candidate 1: Error message hiding

Simplest and most common countermeasure
against SQL Injection
— Achieved by simple configuration options (e.g.

sSuppress error messages or set a custom error
message)

— A classic Security By Obscurity approach

.. why it won’t work ...

Imperva ©2006 @ mm

Blindfolded SQL Injection

Blindfolded SQL Injection

« What s it?

— A set of techniques for the detection and
exploitation of SQL Injection vulnerabilities

— Eliminates the reliance on error messages

* The attacker employs Boolean tests
determine whether an error has occurred

15 Imperva ©2006 @

16

Blindfolc_jed SQL Injection: :
ldentifying an Opportunity

« Testing for the existence of SQL Injection can
be done simply by replacing a field with
equivalent SQL syntax:

— The number 5 can be represented in SQL as (6-1)
— The string ‘test’ can be represented as ‘te’+'st’ (in MS SQL)

or ‘te’||’st’ (in Oracle)
— A date can be replaced with the database’s date function
» getdate() (MS SQL) or sysdate (Oracle)
« Matching results indicate that the system is
vulnerable, while an error indicates that the

syntax was not parsed by an SQL parser

Imperva ©2006 @ PEH“

17

Blindfolded SQL Injection:
Targeting the Attack Parameters

* Since errors are hidden / identical some form of
differentiation Is required

« Step #1 — Enumerating the number of columns
— Done using an ORDER BY statement, which sorts by specific field

— When an existing field is chosen, the result is sorted according to it.
However, when a non-existent field is chosen, an error occurs

« Step #2 — Enumerating the type of fields
— Create an initial request with all fields set to NULL
— Type detection is done by guessing one field at a time

* Once field types are known, exploit is trivial

Imperva ©2006 @ mm

18

Blindfolc_jed SQL Injection:
ldentifying a Column

Union Select null,null,null,null,null,null
— Error = Syntax isn’'t right. We have a type issue.

« |t takes some time, but we find the right combo:

« Union Select null,null,null,1,null,null...
— No Error = Syntax & basic typing is right.

« Union Select 1,null,null,1,null,null...
— No Error = 1st column is integer.

» Union Select 1,2,null,1,null,null
— ERROR! = 2nd column is NOT integer.

* Union Select 1,'2’,null,1,null,null
— No Error = 2nd column is String.

e Continue until you understand the column types

Imperva ©2006

19

Countermeasures
Candidate 2: Signhature Protection

* Relies on the existing IDS/IPS infrastructure or on an easily
Installed signature protection component

« Attempts to detect common SQL Injection strings such as:
UNION SELECT, OR 1=1, etc.

BUT

« Signatures can only be practically applied to HTTP traffic
— SQL Injection strings are not different than valid SQL statements.

» Placing strict signatures on keywords such as INSERT,
SELECT and DELETE, and characters such as ‘, = and -- will
cause the security mechanism to block valid requests

... Why it won'’t work ...

Imperva ©2006 @ mm

SQL Injection Signature Evasion

21

SQL Injection Signature Evasion

» A set of techniques which allow an attacker to
evade signature protection mechanisms

 Methods include

— Detecting signature protection (EASY)
— Generic evasion techniques
— SQL language specific evasion techniques

Imperva ©2006 @ mm

SQL Injeqtion Signat_ure Evasion: _
Generic Evasion Techniques

* Non-SQL Specific
« Employs common IDS evasion technigues, such as:
— IP Fragmentation
— TCP Segmentation
— White Space Diversification
— Various Encodings (HTTP/UTF8/Unicode/etc)

* Vulnerability to these technigues is a result of poor
Implementation rather than an inherent problem

22 Imperva ©2006 @ PER\A

SQL Injection Signhature Evasion

SQL-Based Techniques

Technique #1 — Value equivalence (instead of OR 1=1)
— OR 'Simple' = 'Simple'

— Make the expression look different but still be the same.
* Adding N will make the value an nvarchar:
* OR 'Simple’' = N'Simple‘
— Concatenation at the SQL level:
* OR 'Simple' = 'Sim'+'ple* (MS-SQL)
¢ OR ‘Simple’ = ‘Sim’||'ple’ (Oracle)
What if the signature detection is looking at a much wider
expression like OR followed by = ?
— OR 'Simple' LIKE 'Sim%'
— OR 'Simple' > 'S

SQL is arich toolset: there are unlimited numbers of examples:
— OR 'Simple' IN ('Simple’")
— OR'S'BETWEEN 'R"AND 'T

23 Imperva ©2006

@iVIPERVA

24

SQL Signature Evasion

SQL Based Techniques

« Technique #2 — White Space Equivalence /
Comments

— Used to evade signatures that contain white spaces, such as
- OR 1=1
= UNION SELECT
- EXEC SP_

¢ Using Comments

— http://localhost/showproducts.asp?CatiD=99’'UNI/**/ON /**/
SE/**/LECT

Imperva ©2006 @ mm

SQL Injection Signhature Evasion

SQL Based Techniques

« Technigue #3 — String Equivalence

— Basic string equivalence is done by executing a
concatenated string (Most DBs have more than
one way of doing so), such as:

« ; EXEC(INS'+ERT INTO..."
- ; EXECUTE(INS'|'ERT INTO..."

— A possible string equivalence is through its
hexadecimal representation, allowing the keyword
SELECT to be represented as 0x73656c656374

25 Imperva ©2006 @ PER\A

Countermeasures
Candidate 3: DB Access Control Lists (ACLS)

« Least privileges applied to the application account

* Protects the database against system level attacks that require
special system privileges, such as the following:

(Oracle examples)
; DROP USER <name>

; DROP TABLE <name>
; GRANT CONNECT, RESOURCES
; SHUTDOWN ABORT
(MS-SQL examples)
; EXEC MASTER.XP_CMDSHELL(“cmd.exe /e dir’) --
; SHUTDOWN --
; DROP DATABASE MyApp —

... why it won’t (completely) work ...

26 Imperva ©2006 @ PER\A

SQL Injection Denial of Service

28

SQL Injection Denial of Service

» A set of techniques to launch Denial of Service
attacks against databases
— Direct or through SQL Injection

« Basic SQL DoS techniques require the application to
be running a privileged user account

* Advanced techniques allow the attacker to perform
various destructive activities through a user account
with limited privileges

— Making the server unavailable
— Corrupting data

Imperva ©2006 @ PEH“

SQL Denial of Servi_ce :
Data Corruption/Destruction

* While not a classic DoS attack, Data destruction/corruption may
often render the application useless

* Recovery time may be significant
— Instead of a reboot, data restoration is required

« Attacker looks for pages which perform DELETE or UPDATE
statements based on a parameter provided by the user
* Injecting an OR 1=1 (or equivalent) string will cause the query to
delete or alter the entire contents of the table.
— For instance, injecting into a password change form:

UPDATE Users SET Password=“BOGUS” WHERE Username=*User~
‘1 7:‘1,

29 Imperva ©2006 @ PER\A

30

SQL Denial of Service :
Resource Consumptlon

« Resource consumption attacks can be achieved by a read-only

user

« Classic DoS: Attacker can prevent others from using the server

« Can be performed through several techniques, such as:

— Creating a very large record set created from a correlated query:

SELECT Al1.*, B1.* FROM A AS Al, B AS Bl

WHERE A1_.AID = A2_AID)
(SELECT B2.*, A3.* FROM B AS B2, A AS A3
WHERE B1.BID = B2.BID)

WHERE (SELECT A2_.*, B3.* FROM A AS A2, B AS B3

— Executing endless loops:

BEGIN DECLARE @A INT:
WHILE (1=1) BEGIN
IF ‘(1=2) BEGIN
SET @A = 1;
END
END

END

Imperva ©2006 @

Effective Countermeasures

The Right Solution — Data security in 3 layers

« The Application — Write secure code
— Use Prepared Statements/Parametric Queries
— Use Stored Procedures
— Validate Input (length, type, character set)

« The Database — Apply available features
— Restrict database user permissions
— Impose resource quotas/limit profiles
— Audit database activity and logs

e External Mechanism

— Use solutions that are aware of application context
— Revalidate some of the security tasks such as input validation and logging

— Perform tests on incoming requests and outgoing responses based on
expected behavior

31 Imperva ©2006 @ PER\A

Effective Countermeasures: Externa_ll Mechanism
A Model for Database Security

« Dynamic Profiling models appropriate database usage
— Database objects
* Queries, stored procedures, privileged operations, system objects, etc
— Users
« Auditable trail of user access and activity
— Business activities and transactions
* Prevents rogue users from overstepping permissions

— Time of day and Location

* Reduces “comfort zone” of rogue users attempting malicious operations outside of
normal work locations or work hours

— Application / Access Method
« Prevents stolen / abused credentials (i.e. rogue user using an application’s credentials)

— Requests per second / Data Consumption Rate
* Prevents DoS attacks and alerts on inappropriate spikes in data use

* Audit and Secure based on usage dynamics
— Verify real-time usage vs. the baseline
— Audit deviations from baseline
— Enforce baseline (as appropriate)

32 Imperva ©2006 @ PER\A

Effective Countermeasures: External Mechanism

SQL Profiling

A continuously evolving model of database and application structure, design
and deployment

0 .
L - Profile - Profile
*’ir{ Comparison Violation?
- 2

Q)
0
w

Add to
Profile?

\]
Add to
History

.
a
%)
w

33 Imperva ©2006 @ PER\A

Imperva SecureSphere

Database Security Gateway

« Assessment

— Models Database Usage
* Dynamic Profiling learns from traffic

* Automatically generates security policy
« Support manual adjustments to policy

— |dentifies Usage Vulnerabilities

&

¢ Audit
— Logs all activity (incl. DBA)

— |dentifies activities that matter in real
time

* Protection

— Alerts (blocks) attacks and policy
violations

— Stops platform attacks
« Database server software
¢ Operating system

34 Imperva ©2006

[e

Users ﬁ]
\' J

=

Data Center

Proprietary Data
and Critical Servers
Security

Gateways e

SecureSphere
Management
Server

%=
Sy
-
. ~ SecureSphere
Database

@iVIPERVA

35

Additional Information

Imperva ©2006

Live Webinars

Register at imperva.webex.com

For more information or a copy of the
“SQL Injection” white paper,
contact me:
Mark Kraynak

mark@imperva.com

THANK YOU!

	Database Security�The Past, the Present, the Future
	Imperva�Who we are
	Agenda
	Data Theft �Publicity & Governmental Action
	Data Theft �Costs are Real for Businesses
	Database Threats and Vulnerabilities
	SQL Injection: A Pervasive Attack to Compromise Data
	SQL Injection: Example 1
	SQL Injection: Example 2
	SQL Injection: Example 2
	Countermeasures: �Common Approaches That Don’t Work
	Countermeasures�Candidate 1: Error message hiding
	Blindfolded SQL Injection
	Blindfolded SQL Injection
	Blindfolded SQL Injection:�Identifying an Opportunity
	Blindfolded SQL Injection:�Targeting the Attack Parameters
	Blindfolded SQL Injection:�Identifying a Column
	Countermeasures�Candidate 2: Signature Protection
	SQL Injection Signature Evasion
	SQL Injection Signature Evasion
	SQL Injection Signature Evasion:�Generic Evasion Techniques
	SQL Injection Signature Evasion�SQL-Based Techniques
	SQL Signature Evasion�SQL Based Techniques
	SQL Injection Signature Evasion�SQL Based Techniques
	Countermeasures�Candidate 3: DB Access Control Lists (ACLs)
	SQL Injection Denial of Service
	SQL Injection Denial of Service
	SQL Denial of Service�Data Corruption/Destruction
	SQL Denial of Service�Resource Consumption
	Effective Countermeasures
	Effective Countermeasures: External Mechanism�A Model for Database Security
	Effective Countermeasures: External Mechanism�SQL Profiling�A continuously evolving model of database and application structur
	Imperva SecureSphere �Database Security Gateway
	Additional Information

