
Testing PL/SQL with Ounit
UCRL-PRES-215316

December 21, 2005
Computer Scientist

Lawrence Livermore National Laboratory
Arnold Weinstein

Filename: OUNIT



12/21/05 2

Disclaimer
 
 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and shall 
not be used for advertising or product endorsement purposes. 

 
 

Auspices Statement 
 

This work was performed under the auspices of the U.S. Department of Energy by University of California, 
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 



12/21/05 3

Definition
• Software testing is a process used to identify the

correctness, completeness and quality of developed
computer software.

• Actually, testing can never establish the correctness of
computer software, as this can only be done by formal
verification. It can only find defects, not prove that there
are none.

• There are many approaches to software testing, but
effective testing of complex products is essentially a
process of investigation, not merely a matter of creating
and following rote procedure.



12/21/05 4

Why do we test ?

Its something we just do.



12/21/05 5

Why do we really test !

Because failure is not an option.



12/21/05 6

Where did Ounit come from

Steven Feuerstein



12/21/05 7

What is Ounit ?
• Ounit is a utility that helps Oracle developers unit test

their code faster, easier and more comprehensively
than ever before.

• Ounit offers a powerful graphical interface to
utPLSQL, the open source unit testing framework for
the Oracle PL/SQL language.
– Ounit gui only available on windows
– utPLSQL available anywhere SQL/PLUS works

• With Ounit, you can simply point and click your way
through testing sessions, and instantly see the
outcomes. Because testing is easier and faster you will
test more frequently and more thoroughly.

•  How much does it cost? It’s FREE.



12/21/05 8

What isn’t Ounit
• Ounit does not help you build your test cases

and unit test procedures.
• Ounit is not intended to replace powerful

interactive development environments. Instead,
they will complement those tools with
powerful, GUI-driven testing.



12/21/05 9

What is utPLSQL
• utPLSQL is a unit testing framework for

programmers using Oracle's PL/SQL language.
It allows the automated testing of PL/SQL
packages, functions and procedures.

• You must develop the test code to exercise your
application code and return results that the
utAssert command can analyze.

•  How much does it cost? It’s FREE.



12/21/05 10

Testing with Ounit and utlPLSQL
• Build a test package

– Generate a test package shell with utGen package
procedure

– Modify test package

SET serveroutput on size 1000000

SPOOL c:\temp\cca_to_room.sql

EXEC utgen.testpkg('cca_to_room',null,null,'UT_');

SPOOL off

SQL/PLUS script



12/21/05 11

Generated Test Package
CREATE OR REPLACE PACKAGE BODY ut_cca_to_room IS
   PROCEDURE ut_setup IS
   BEGIN
      NULL;
   END;
   PROCEDURE ut_teardown IS
   BEGIN
      NULL;
   END;
   PROCEDURE ut_cca_to_room IS   -- Verify and complete data types.
      against_this   VARCHAR2(2000);
      check_this     VARCHAR2(2000);
   BEGIN
-- Define "control" operation
      against_this := NULL;
-- Execute test code
      check_this := cca_to_room(string_in => '');
-- Compare the two values.
      utassert.eq('Test of CCA_TO_ROOM', check_this, against_this);
   END ut_cca_to_room;
END ut_cca_to_room;



12/21/05 12

Modify test package
• Modify test package

– Add Setup and Teardown code
– Add specific test case

• Start with null case
• Add case for every possible combination of inputs or as

many as needed



12/21/05 13

Modified Test Package
PROCEDURE ut_cca_to_room IS      -- Verify and complete data types.
      against_this   VARCHAR2(2000);  check_this     VARCHAR2(2000);
BEGIN
-- Null test case 1.0
 against_this := NULL;
 check_this := cca_to_room(string_in => NULL);
 utassert.isnull('Test 1.0 of cca_to_room null', check_this);
-- Normal test case 1.1
 against_this := '100';
 check_this := cca_to_room(string_in => 'B111 R100');
 utassert.eq('Test 1.1 of cca_to_room B111 R100',check_this,against_this);
-- Leading Blank test case 1.2
 against_this := 'B100';
 check_this := cca_to_room(string_in => ' B111 RB100');
 utassert.eq('Test 1.2 of cca_to_room B111 RB100',check_this against_this);
…
END ut_cca_to_room;



12/21/05 14

Testing with Ounit and utlPLSQL
• Build a test package

– Generate a test package shell with utGen package procedure
– Modify test package

• Add Setup and Teardown code
• Add specific test case

– Start with null case
– Add case for every possible combination of inputs or as many as needed

• Run test case with Ounit
– Set the test package to use with program being tested
– Run test package
– Make adjustments to test package or program based on

results of test.
– When you make changes to program rerun test to make sure

everything is still working properly.



12/21/05 15

Ounit Test Package Coordination



12/21/05 16

Ounit Test Package Source



12/21/05 17

Ounit Test Package Test Source



12/21/05 18

Ounit Test Package Results



12/21/05 19

Test Package Results from SQL/PLUS
execute utPLSQL.test ('CCA_TO_ROOM', recompile_in => FALSE);

SUCCESS: "CCA_TO_ROOM"

> Individual Test Case Results:

SUCCESS - CCA_TO_ROOM.UT_CCA_TO_ROOM: ISNULL "Test 1.0 of cca_to_room null“

Expected "" and got ""

SUCCESS - CCA_TO_ROOM.UT_CCA_TO_ROOM: EQ "Test 1.1 of cca_to_room B111 R100“

Expected "100" and got "100"

SUCCESS - CCA_TO_ROOM.UT_CCA_TO_ROOM: EQ "Test 1.2 of cca_to_room ^B111 RB100“

Expected "B100" and got "B100"

…

>

> Errors recorded in utPLSQL Error Log:

> NONE FOUND



12/21/05 20

Using setup and teardown
 PROCEDURE utsetup IS
   BEGIN
      -- Remove test cases
      DELETE      bldgs
            WHERE bldg IN('001TEST', '011TEST', '111TEST');
--
      DELETE      chemcontrolarea
            WHERE bldg IN('001TEST', '011TEST', '111TEST');
   END;
   PROCEDURE utteardown IS
   BEGIN
      -- Remove test cases
      DELETE      bldgs
            WHERE bldg IN('001TEST', '011TEST', '111TEST');
--
      DELETE      chemcontrolarea
            WHERE bldg IN('001TEST', '011TEST', '111TEST');
   END;



12/21/05 21

Setup Data
-- Test for proper set-up of no records matching test records
--
  bldg_v := '011TEST';
  OPEN bldgs_curvar FOR SELECT * FROM bldgs WHERE bldg = bldg_v;
  FETCH bldgs_curvar INTO bldgs_rec;
--
  OPEN bldg_facs_curvar FOR SELECT * FROM bldg_facs WHERE bldg = bldg_v;
  FETCH bldg_facs_curvar INTO bldg_facs_rec;
--
…
--
  utassert.isnull('Test-1.1 of bldgs field bldgs', bldgs_rec.bldg);
  utassert.isnull('Test-1.2 of bldg_facs field bldgs', bldg_facs_rec.bldg);
…
--
  CLOSE bldgs_curvar;
  CLOSE bldg_facs_curvar;
  CLOSE cca_curvar;



12/21/05 22

Create some Data
-- Build first set of records for CCA="B11TEST YARD"
--
    INSERT INTO chemcontrolarea (cca_code, admin_org_id, TIMESTAMP, quad)
           VALUES ('B011test YARD', 1000005, 465722822, '4');
--
    OPEN bldgs_curvar FOR SELECT *FROM bldgs WHERE bldg = bldg_v;
    FETCH bldgs_curvar INTO bldgs_rec;
    OPEN bldg_facs_curvar FOR SELECT * FROM bldg_facs WHERE bldg = bldg_v;
    FETCH bldg_facs_curvar INTO bldg_facs_rec;
…
--
  utassert.this('Test-2 of BLDG_FACS_SYNC', if_true);
  utassert.eq('Test-3.1 of bldgs field bldgs', bldgs_rec.bldg, bldg_v);
  utassert.eq('Test-3.2 of bldg_facs field bldgs', bldg_facs_rec.bldg, bldg_v);
…
--
      CLOSE bldgs_curvar;
      CLOSE bldg_facs_curvar;
…



12/21/05 23

Ounit Results



12/21/05 24

TOAD and Procedure



12/21/05 25

TOAD and utPLSQL test



12/21/05 26

Ounit Home Page



12/21/05 27

utPLSQL Home Page



12/21/05 28

Summary
• Testing is good, but its time consuming and difficult.
• Ounit and utPLSQL are very useful tools for testing

PL/SQL.
– They make testing PL/SQL easier and faster
– They are easy to install and configure
– They formalize and store test procedures so they can be rerun

as changes are made to the code.

• The testing however is only as good as you make it.
But with this frame work your testing will improve.


