
The Hobgoblin of Little Minds

© Ignatius Fernandez 18/18/2005

The Hobgoblin of Little Minds

A foolish consistency is the hobgoblin of little minds,

Adored by little statesmen and philosophers and divines.

RALPH WALDO EMERSON

Introduction

The above quote appears in the chapter on Data Consistency and
Concurrency in older editions of the Oracle Concepts Manual. Tom Kyte,
Vice President of Core Technologies at Oracle, characterizes differences
in approaches to Data Consistency and Concurrency as the fundamental
difference between Oracle and other database vendors, saying that it can
be Oracle's best feature or it's worst feature (if you don’t understand it)
(Reference [8]). He also says that, if you don’t understand it, you are
probably doing some transactions wrong in your system and that “Do-It-
Yourself” Referential Integrity is almost always wrong!

Caveat Lector!

Oracle Corporation has not reviewed this essay for accuracy.

The Data Consistency and Concurrency Challenge

Oracle has patented the techniques it uses for concurrency control. One of
the names on the patent filing is that of Dr. Kenneth Jacobs, a.k.a. “Dr.
DBA”, currently the Vice President of Product Strategy at Oracle. Here is
a quote from the patent documents (Reference [2]).

The Hobgoblin of Little Minds

© Ignatius Fernandez 2 8/18/2005

“To describe fully consistent transaction behavior when
transactions execute concurrently, database researchers
have defined a transaction isolation level called
“serializability”.

In the serializable isolation level, transactions must execute
in such a way that they appear to be executed one at a time
(“serially”), rather than concurrently. […]

In other words, concurrent transactions executing in
serializable mode are only permitted to make database
changes they could have made if the transactions had been
scheduled to execute one after another, in some specific
order,1 rather than concurrently.”

The serializability criterion for database consistency is very well known
and is even mentioned in the ANSI SQL standard (Reference [1]). Here is
an excerpt.

“The isolation level of an SQL-transaction defines the
degree to which the operations on SQL-data or schemas in
that SQL-transaction are affected by the effects of and can
affect operations on SQL-data or schemas in concurrent
SQL-transactions. […] The execution of concurrent SQL-
transactions at isolation level SERIALIZABLE is
guaranteed to be serializable.

A serializable execution is defined to be an execution of the
operations of concurrently executing SQL-transactions that
produces the same effect as some serial execution of those
same SQL-transactions. A serial execution is one in which
each SQL-transaction executes to completion before the
next SQL-transaction begins.”

1 Note that different serial orderings of transactions can conceivably produce different results.
(For example, multiplying a number by 2 and then adding 3 will produce a different result if the
operations are reversed.) Since each such result is permissible when the transactions are
executed in serial fashion, they are all permissible when the transactions are executed in
concurrent fashion.

The Hobgoblin of Little Minds

© Ignatius Fernandez 38/18/2005

However, it is not very well understood that serializability is not a
necessary condition for database consistency even though it is certainly a
sufficient condition. In other words, serializability is more restrictive than
strictly necessary. A Microsoft researcher (Reference [9]) recently
described another “sufficient condition” for database consistency called
“semantic correctness” which is less restrictive than serializability. The
following example is provided in Reference [9].

“For example, a stock trading application might have a
buy transaction type that takes as parameters the identity of
a stock and the number of shares, n, to be purchased and a
result that states ‘when each share was purchased no
cheaper unbought shares of the stock existed in the
database’.

In a semantically correct schedule, two concurrent
transactions, T1 and T2, could each buy some shares at
$30 and some at $31 per share, even though initially there
are n shares available at $30.

First, T1 buys n/2 shares at $30; then, T2 buys n/2 shares
at $30; then, since there are no more shares available at
$30, T1 buys n/2 shares at $31; and, finally, T2 buys n/2
shares at $31.

When each transaction terminates, its result is true since,
when each share was bought, no cheaper unbought shares
existed in the database.

The final state could not have been produced by a
serializable schedule since the purchase price of all shares
bought by one or the other of the two transactions would
have been $30.”

It is also not very well understood that, as a general rule, database
consistency schemes that guarantee serializability are also more restrictive
than strictly necessary i.e. they enforce restrictions that are sufficient but
not absolutely necessary.

The Hobgoblin of Little Minds

© Ignatius Fernandez 4 8/18/2005

Fig. 1: The relationship between different classes of executions.

Houston, We Have a Problem!

The following quote is from an academic paper by researchers at the
University of Massachusetts at Boston (Reference [5]).

“All major database system products are delivered with
default non-serializable isolation levels, often ones that
encounter serialization anomalies more commonly than
[Oracle’s Snapshot Isolation], and we suspect that
numerous isolation errors occur each day at many large
sites because of this, leading to corrupt data sometimes
noted in data warehouse applications.”

The Hobgoblin of Little Minds

© Ignatius Fernandez 58/18/2005

The following quote is from the chapter on Data Consistency and
Concurrency in the Oracle 10g Concepts Manual (Reference [10]). The
language has not changed since the days of Oracle 7 and can be traced to
an Oracle white paper written by Dr. Kenneth Jacobs (“Dr. DBA”) in
1995 (Reference [6]).

“Although Oracle serializable mode […] offers many
benefits compared with read locking implementations, it
does not provide semantics identical to such systems.
Application designers must take into account the fact that
reads in Oracle do not block writes as they do in other
systems.

Transactions that check for database consistency at the
application level can require coding techniques such as
the use of SELECT FOR UPDATE [editorial emphasis
added]. This issue should be considered when applications
using serializable mode are ported to Oracle from other
environments.”

In another place in the same chapter, the caution is repeated, once again
using language from the 1995 paper by Dr. Jacobs.

“Because Oracle does not use read locks […], data read by
one transaction can be overwritten by another.
Transactions that perform database consistency checks at
the application level cannot assume that the data they read
will remain unchanged during the execution of the
transaction even though such changes are not visible to the
transaction.

Database inconsistencies can result [editorial emphasis
added] unless such application-level consistency checks are
coded with this in mind, even when using serializable
transactions [editorial emphasis added].”

The next quote is from Reference [5].

“The classical justification for lower isolation levels is that
applications can be run under such levels to improve
efficiency when they can be shown not to result in serious
errors [editorial emphasis added], but little or no guidance
has been offered to application programmers and DBAs by
vendors as to how to avoid such errors.”

The Hobgoblin of Little Minds

© Ignatius Fernandez 6 8/18/2005

Part of the problem lies in the fact that the necessary academic research
has only recently been completed. Here is another quote from Reference
[5].

“When two official auditors for the TPC-C benchmark
were asked to certify that the Oracle SERIALIZABLE
isolation level acted in a serializable fashion on the TPC-C
application, they did so by "thinking hard about it" […]. It
is noteworthy that there was no theoretical means to certify
such a fact […].”

To summarize, application developers must take into account that the
default Oracle isolation level does not guarantee consistent results and that
program modifications may be necessary to guarantee consistent results
(even when using stricter isolation levels). This is a good time to repeat
Tom Kyte’s words of warning (Reference [8]).

“Unless you understand it, you’re probably doing some
transactions wrong in your system! ([Do-It-Yourself
Referential Integrity] is almost always wrong)”

Isolation Levels … And All That Jazz!

Concurrency control duties put a heavy burden on the DBMS. For
example, if a write-transaction modifies a data item, it is advisable that
other transactions not be allowed to read the modified value until the
write-transaction commits. “Pessimistic” concurrency control schemes
such as those used by Microsoft and IBM achieve this by forcing read-
transactions to acquire “read-locks” on the data items they want to read2.
A read-transaction will not be able to acquire a read-lock if a write-
transaction has modified the data item in question and has not yet saved its
modifications.

2 Microsoft SQL Server 2005 will partially follow Oracle’s lead and provide a non-locking
concurrency scheme similar to Oracle’s transaction-level read consistency scheme. However, it
will be limited to read-only transactions.

The Hobgoblin of Little Minds

© Ignatius Fernandez 78/18/2005

The “READ UNCOMMITTED” isolation level3 provides the application
developers with the ability to signal to the DBMS that read-locks are not
necessary because no write-transactions are anticipated (as in the case of a
Data Warehouse). The DBMS then no longer has to expend effort in
acquiring read-locks and efficiency is thereby improved.

Reference [5] summarizes the situation perfectly.

“The classical justification for lower isolation levels is that
applications can be run under such levels to improve
efficiency when they can be shown not to result in serious
errors [editorial emphasis added] …”

Oracle offers three isolation levels, one of which is not documented in the
Oracle 10g manuals.

The default isolation level corresponds to the transaction setting
“isolation_level=read_committed” and provides statement-level
consistency.

A second, stricter, isolation level, activated using the transaction setting
“isolation_level=serializable”, provides transaction-wide consistency and
is referred to as “snapshot isolation with the first-updater-wins rule” in the
academic literature (Reference [5]).

A third, very strict isolation level, activated using the database setting
“serializable=true” (Oracle 9i and prior versions) or “_serializable=true”
(Oracle 10g), guarantees serializability, but only at the expense of table-
level read-locks on all tables accessed by the transaction. It is not
documented in the Oracle 10g manuals.

3 The READ UNCOMMITTED isolation level is not supported by Oracle.

The Hobgoblin of Little Minds

© Ignatius Fernandez 8 8/18/2005

Fig. 2: The relationships between Oracle isolation levels.

Statement-level Consistency

This is the default isolation level provided by Oracle and corresponds to
the transaction setting “isolation_level=read_committed”. Every SQL
statement operates on a database snapshot containing only data values that
were committed before the statement began. Every new statement within
the same transaction operates on a different snapshot and, therefore, this
isolation level only provides statement-level consistency.

Readers do not acquire “read-locks” on rows satisfying their selection
criteria and, therefore, do not block writers. Writers acquire exclusive
locks on rows that they modify and, therefore, they block other writers,
but they do not block other readers.

The Hobgoblin of Little Minds

© Ignatius Fernandez 98/18/2005

If a statement retrieves a data block and finds that it has been modified
since the statement began, it searches the “rollback segments” for the prior
version of the block. If the prior version has aged out of the rollback
segments, the statement fails with the well-known ORA-1555 error:
“Snapshot too old”.

This isolation level can cause inconsistent results if used in inappropriate
circumstances. For example, it does not prevent the “Lost Update”
problem described in Reference [3] as follows.

“Transaction A retrieves some tuple p at time t1;
transaction B retrieves that same tuple p at time t2;
transaction A updates [and commits] the tuple (on the basis
of the values seen at time t1) at time t3; and transaction B
updates [and commits] the same tuple (on the basis of the
values seen at time t2, which are the same as those seen at
time t1) at time t4.

Transaction A’s update is lost at time t4, because
transaction B overwrites it without even looking at it.”

The Case of the Phantom Fortune

Here is a PL/SQL procedure that you can use to simulate the “Lost
Update” problem that can arise when using statement-level consistency. It
withdraws the indicated amount from one account and deposits it into a
second account. After reading the current balances in each account, it
purposely sleeps for 60 seconds to allow you to start another transaction
from another database session, this time to transfer money from a third
account to the second account (to which you are simultaneously
attempting to transfer money in the first session).

You will find that money is successfully subtracted from the first account
and the third account, but the second account does not receive both
amounts!

Create a table and populate it as described below. At the start of the test,
each account contains exactly ten dollars.

The Hobgoblin of Little Minds

© Ignatius Fernandez 10 8/18/2005

create table bank_account (
 account# integer,
 balance number
);
--
insert into bank_account values (1,10);
insert into bank_account values (2,10);
insert into bank_account values (3,10);

Here is the PL/SQL program needed for the test. Note that it uses the
“sleep” procedure, which is part of the “user_lock” package. To create this
package and give execute permissions to public, you will need to log in as
SYS and run the “userlock.sql” script in the
$ORACLE_HOME/rdbms/admin directory. Also note that the parameter
to the sleep procedure is expressed in hundredths of seconds.
“userlock.sleep(6000)” suspends program execution for 60 seconds.

create or replace procedure debit_credit(
 debit_account in integer,
 credit_account in integer,
 debit_amount in integer
)
is
 debit_account_balance number;
 credit_account_balance number;
begin
 select balance
 into debit_account_balance
 from bank_account
 where account#=debit_account;
 --
 select balance
 into credit_account_balance
 from bank_account
 where account#=credit_account;
 --
 debit_account_balance :=
 debit_account_balance - debit_amount;
 --
 credit_account_balance :=
 credit_account_balance + debit_amount;
 --
 user_lock.sleep(6000);
 --
 update bank_account
 set balance = debit_account_balance
 where account# = debit_account;
 --
 update bank_account
 set balance = credit_account_balance
 where account# = credit_account;
 --
 commit;

The Hobgoblin of Little Minds

© Ignatius Fernandez 118/18/2005

end;

Execute the following command to transfer five dollars from the first
account to the second account.

execute debit_credit(1,2,5);

Before the first command has been completed, switch to another database
session and execute the following command to transfer five dollars from
the third account to the second account.

execute debit_credit(3,2,5);

You will find that both statements complete successfully, however the
balance in the second account is only fifteen dollars (instead of twenty
dollars) even though the balance in the other two accounts has dropped
from ten dollars to five dollars. Five dollars has done a vanishing trick!

Transaction-level Consistency

This non-default isolation level avoids most errors that can occur at the
default isolation level and is activated using the transaction setting
“isolation_level=serializable”. It is referred to as “snapshot isolation with
the first-updater-wins rule” in the academic literature. Every SQL
statement operates on a snapshot of the database containing only data
values that were committed before the transaction began. Every statement
within the same transaction operates on the same snapshot and, therefore,
this isolation level provides transaction-level consistency.

The other significant difference between this non-default isolation level
and the default isolation level is that Oracle will abort a transaction that
attempts to modify a data item that was modified after the transaction
began4. This is called the “first-updater-wins” rule. If you use this
isolation level to run the test described in the previous section, the second
transaction will abort with the error message “can't serialize access for this
transaction” (ORA-8177).

4 Oracle will also abort a transaction if it cannot verify that the data item was not modified after
the transaction began. The details can be found in the Oracle 10g Concepts Manual (Reference
[10]).

The Hobgoblin of Little Minds

© Ignatius Fernandez 12 8/18/2005

Write Skew

While transaction-level consistency does a good job at avoiding a plethora
of errors including “Lost Updates” (Reference [3]) as well as “Dirty
Reads”, “Non-repeatable Reads” and “Phantoms” (Reference [11]), it is
subject to a class of error referred to as “Write Skew” (Reference [5]).

Here are three examples of “Write Skew”. The first example is taken
verbatim from the chapter on Data Consistency and Concurrency in the
Oracle 10g Concepts Manual (Reference [10]).

“One transaction checks that a row with a specific primary
key value exists in the parent table before inserting
corresponding child rows. The other transaction checks to
see that no corresponding detail rows exist before deleting
a parent row.

In this case, both transactions assume (but do not ensure)
that data they read will not change before the transaction
completes. The read issued by transaction A does not
prevent transaction B from deleting the parent row, and
transaction B’s query for child rows does not prevent
transaction A from inserting child rows.

This scenario leaves a child row in the database with no
corresponding parent row.”

The second example is from Reference [5].

“Suppose X and Y are data items representing bank
balances for a married couple, with the constraint that
X+Y > 0 (the bank permits either account to overdraw as
long as the sum of the account balances remains positive).
Assume that initially X = 70 and Y = 80.

Transaction T1 reads X and Y, then subtracts 100 from X,
assuming it is safe because the two data items added up to
150. Transaction T2 concurrently reads X and Y, then
subtracts 100 from Y, assuming it is safe for the same
reason.”

The final example is paraphrased from Chapter 3 (Locking and
Concurrency) in Tom Kyte’s best-selling book, “Expert One-On-One
Oracle” (Reference [7]).

The Hobgoblin of Little Minds

© Ignatius Fernandez 138/18/2005

Two tables, A and B, initially contain no rows. Session 1
uses transaction-level consistency and executes the
command “insert into A select count(*) from B”. Session 2,
also using transaction-level consistency, executes the
command “insert into B select count(*) from A”. Both
sessions then commit successfully.

Both table A and table B now contain a single data item
with value 0. It is easy to see that this cannot happen if the
sessions were executed serially in some order.

Ensuring Serializability of Transaction-level Consistency

While transaction-level consistency does not always guarantee consistent
results, it is possible for a set of transactions using transaction-level
consistency to operate “with serializable effect”. For example, Reference
[5] rigorously proves that the transactions comprising the TPC-C
benchmark (Reference [11]) always operate with serializable effect when
using transaction-level consistency.

Reference [5] also explains how to determine if the transactions
comprising an arbitrary application always operate with “serializable
effect” when using transaction-level consistency. However, automated
tools are not yet available for the purpose and, therefore, this sort of
analysis may not be feasible in a system containing thousands of different
transaction types.

There are two methods of achieving serializable results when using
transaction-level consistency.

The first method is to force Oracle to acquire table-level read-locks on
every table that is read or modified during a transaction. This is achieved
using the database initialization parameter “serializable=true” (Oracle 9i
and prior versions) or the “hidden” parameter “_serializable=true” (Oracle
10g).

The second method leverages the “first-updater-wins” rule and requires
the enforcement of one of the following “sufficient conditions” for every
pair of write-transactions comprising an application.

The Hobgoblin of Little Minds

© Ignatius Fernandez 14 8/18/2005

1. The transactions must operate on separate tables or on different
areas of tables. For example, an application might be coded in such
a way that a write-transaction reads and modifies the data of only
one department of the organization at a time.

2. Both transactions must update at least one common record. If a
suitable record does not exist, then an artificial record can be
created. Reference [5] refers to this strategy as “materializing the
conflict”. If the transactions attempt to execute concurrently, then
the “first-updater-wins” rule will cause one of them to fail with an
ORA-8177 error (which is the needed behavior).

The above technique is a modified version of a technique listed in an
academic paper published a few months ago (Reference [4]). The
“SELECT FOR UPDATE” solution (a.k.a. “Do-It-Yourself” Referential
Integrity) suggested in the chapter on Data Consistency and Concurrency
in the Oracle Concepts Manual (Reference [10]) is a variation of the
technique. The same effect can also be achieved by defining the
appropriate “foreign-key” constraint5.

Summary

It is important to understand each isolation level and choose one that
maximizes concurrency but avoids inconsistent results. In some cases,
program modifications are necessary to avoid inconsistent results.

Acknowledgements

I am grateful to Venkat Devraj, CEO of ExtraQuest Corporation and the
author of Oracle 24x7 Tips and Techniques, and to Ravi Kulkarni, Senior
Database Administrator at Corio, for carefully reading this essay and
providing helpful comments.

References

[1] ANSI. X3.135-1992, Database Language SQL, 1993. Available at
http://www.cs.pdx.edu/~len/587/sql-92.pdf.

5 Oracle uses “SELECT FOR UPDATE” while checking foreign-key constraints.

The Hobgoblin of Little Minds

© Ignatius Fernandez 158/18/2005

[2] R. Bamford and K. Jacobs. Method and Apparatus for Providing
Isolation Levels in a Database System. United States Patent No.
5,870,758, 1996. Available at http://www.uspto.gov/, on payment of a $3
download fee.

[3] C. Date. An Introduction to Database Systems, Sixth Edition. Addison
Wesley, 1994, Chapter 14.

[4] S. Elnikety, F. Pedone, and W. Zwaenepoel. Generalized Snapshot
Isolation and a Prefix-Consistent Implementation. 2004. Available at
http://icwww.epfl.ch/publications/documents/IC_TECH_REPORT_200421
.pdf.

[5] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha.
Making snapshot isolation serializable. 1996. Available at
http://www.cs.umb.edu/~isotest/snaptest/snaptest.pdf.

[6] K. Jacobs, R. Bamford, G. Doherty, K. Haas, M. Holt, F. Putzolu, and
B. Quigley. Concurrency Control: Transaction Isolation and Serializability
in SQL92 and Oracle7. Oracle White Paper, Part No. A33745, 1995.
Available on request from Oracle Support.

[7] T. Kyte. Expert One-On-One Oracle. Wrox Press, 2001, Chapter 3.

[8] T. Kyte. Inside Multiversioning. Slide presentation at the Northern
California User Group Fall 2004 conference, 2004. Available at
http://www.nocoug.org/download/2004-08/RWCons.ppt.

[9] S. Lu, Member, A. Bernstein, and P. Lewis. Correct Execution of
Transactions at Different Isolation Levels. 2004. Available at
http://www.cs.wayne.edu/~shiyong/papers/tkde04.pdf.

[10] Oracle. Concepts. 2004, Chapter 13. Available at
http://www.oracle.com/technology/software/index.html.

[11] TPC. TPC-C Benchmark Specification. Available at
http://www.tpc.org/tpcc/.

The Hobgoblin of Little Minds

© Ignatius Fernandez 16 8/18/2005

Iggy Fernandez is the Lead DBA for a Silicon Valley
startup and is Oracle 10g certified. Previously, he was the
Manager of Database Administration for Corio, an
Application Services Provider (ASP) and was responsible
for a mixed portfolio of nearly one thousand Oracle and
SQL Server databases. He is interested in best practices for
Oracle database administration and is writing a book called
“A Structured Approach to Oracle Database Administration
using Oracle 10g” which seeks to apply I.T. Service
Management (ITSM) techniques to Oracle database
administration. You can contact him at
iggy_fernandez@hotmail.com.

