
Copyright © 2002 by John Beresniewicz

Assertions, Exceptions, and Module Assertions, Exceptions, and Module
StabilityStability

John Beresniewicz
Oracle Corporation

Copyright © 2002 by John Beresniewicz

AgendaAgenda

• Design by Contract

• Assertions

• Exceptions

• Modular code

• PL/SQL construction techniques

Copyright © 2002 by John Beresniewicz

Design by Contract Design by Contract

Design by Contract is a powerful metaphor that... makes
it possible to design software systems of much higher
reliability than ever before; the key is understanding that
reliability problems (more commonly known as bugs)
largely occur at module boundaries, and most often
result from inconsistencies in both sides’ expectations.

Bertrand Meyer, Object Success

Copyright © 2002 by John Beresniewicz

Contract elementsContract elements

• PRECONDITIONS
– What will be true when module is entered?

• POSTCONDITIONS
– What will be true when module completes?

• INVARIANTS
– What will not be changed by module execution?

Copyright © 2002 by John Beresniewicz

PL/SQL and Design by ContractPL/SQL and Design by Contract

• Errors occur at module interfaces

• Design by Contract = formalizing
interfaces
– IN values must obey preconditions
– OUT and RETURN must satisfy postconditions

• Exceptions as an invariant violation
(system state change)

Copyright © 2002 by John Beresniewicz

Assertions and contracts Assertions and contracts

Good contracts are those which exactly specify the
rights and obligations of each party...In software design,
where correctness and robustness are so important, we
need to spell out the terms of the contracts as a
prerequisite to enforcing them. Assertions provide the
means to state precisely what is expected from and
guaranteed to each side in these arrangements.

Bertrand Meyer,
Object-Oriented Software Construction

Copyright © 2002 by John Beresniewicz

Basic module structureBasic module structure

• ASSERT
– Preconditions

• COMPUTE
– Small modules with clear contracts

• RETURN
– Function-oriented

Copyright © 2002 by John Beresniewicz

PL/SQL assertionsPL/SQL assertions

• Test boolean and signal if FALSE

• Implement in PL/SQL as a procedure

PROCEDURE assert (cond_IN IN BOOLEAN);

assert(parm1 BETWEEN 0 AND 100);
assert(plsqltbl.COUNT > 0);
assert(vbl2 IS NOT NULL);
assert(fcnX > constantY);

Copyright © 2002 by John Beresniewicz

Simplest assert procedureSimplest assert procedure

• NULL tests FALSE and raises exception

PROCEDURE assert (cond_IN BOOLEAN)
IS
BEGIN

IF NOT NVL(cond_IN,FALSE)
THEN

RAISE ASSERTFAIL;
END IF;

END assert;

Copyright © 2002 by John Beresniewicz

Assertion failures are bugsAssertion failures are bugs

• Precondition assertion failure signals
error in client module

• Postcondition assertion failure signals
error in server module

Copyright © 2002 by John Beresniewicz

Turning off assertionsTurning off assertions

• Comment out but leave in code
• Suppress for performance issue only

FUNCTION calledoften
(p1 varchar2, p2 integer) RETURN BOOLEAN

IS
BEGIN
-- assert(LENGTH(p1) BETWEEN 10 AND 100);
-- assert(BITAND(p2,3) = 3);
/* code for module... */

END calledoften;

Copyright © 2002 by John Beresniewicz

Exceptions Exceptions

...whenever available, a method for engineering out
failures is preferable to methods for recovering from
failures.

Bertrand Meyer,
Object-Oriented Software Construction

Copyright © 2002 by John Beresniewicz

Catching an exception on purposeCatching an exception on purpose

• Exception provides the essential
information

FUNCTION IsNumber (txt_IN IN varchar)
RETURN BOOLEAN

IS
test NUMBER;

BEGIN
BEGIN

test := TO_NUMBER(txt_IN);
EXCEPTION

WHEN VALUE_ERROR THEN null;
END;

RETURN (test IS NOT NULL);
END IsNumber;

Copyright © 2002 by John Beresniewicz

Best practice: smart Best practice: smart scopingscoping

• WHEN an Oracle exception can be
anticipated in a section of code,

• AND that exception can be safely
handled,

• THEN enclose the code in a sub-block
and handle the exception (and only that
exception)

Copyright © 2002 by John Beresniewicz

Best Practice: declare safelyBest Practice: declare safely

• Initialize declarations safely

• DO NOT initialize variables at
declaration with function calls

PROCEDURE willnotfail IS
localvar INTEGER;

BEGIN
localvar := initfunction;

EXCEPTION
WHEN OTHERS THEN null;

END willnotfail;

Copyright © 2002 by John Beresniewicz

Worst practice: catch and ignoreWorst practice: catch and ignore

• Masks errors and thus lies to callers

• Returns BOOLEAN with NULL value

FUNCTION badfcn(p1_IN integer)
RETURN BOOLEAN IS

BEGIN
/* some code */

EXCEPTION
WHEN OTHERS THEN RETURN null;

END badfcn;

Copyright © 2002 by John Beresniewicz

Catch, cleanup and reCatch, cleanup and re--RAISERAISE

• Log errors and clean up
• Re-raise exceptions to caller
• “Dead programs tell no lies”

– The Pragmatic Programmer

EXCEPTION
WHEN OTHERS
THEN

log_error(SQLCODE);
/* local clean up

(e.g.close cursors) */
RAISE;

Copyright © 2002 by John Beresniewicz

Layered exception handlingLayered exception handling

BEGIN
null;

END;

BEGIN
EXCEPTION
END;

BEGIN
EXCEPTION
END;

call

call

ASSERTFAIL

Err log
table

RAISE

App layer:
expose to
user or catch
and recover

Middle layer: log
and re-raise

Base layer:
asserts and
no handlers

Copyright © 2002 by John Beresniewicz

MODULAR CODEMODULAR CODE

Assembling systems from stable
components

Copyright © 2002 by John Beresniewicz

Increased contract enforcementIncreased contract enforcement

Assert

Assert

AssertAssert Assert

Assert

Each module asserts
preconditions

More modules =
more interfaces =
more stable code

“Assertion-tree” of contract-hardened code

Copyright © 2002 by John Beresniewicz

ContractContract--driven modulesdriven modules

• Postcondition guarantee is strong
requirement

• Stability derives from rigid contracts

• Systems of precondition assertion trees

Copyright © 2002 by John Beresniewicz

Modularization principlesModularization principles

• Single-purpose functions and procedures

• Minimize and organize coupling

• Maintain package coherence

• Simplify interfaces

Copyright © 2002 by John Beresniewicz

PL/SQL ConstructionPL/SQL Construction

• Assert all preconditions

• Modular and function-oriented
programming

• Standard local packaged assert (SLPA)

Copyright © 2002 by John Beresniewicz

SLPA: specificationSLPA: specification

• Standardizes ASSERTFAIL exception

• Avoid coupling via duplication

CREATE PACKAGE pkgname AS

ASSERTFAIL EXCEPTION;
ASSERTFAIL_C CONSTANT INTEGER := -20999;
PRAGMA EXCEPTION_INIT(ASSERTFAIL, -20999);
PKGNAME_C CONSTANT VARCHAR2(20):=‘pkgname';

--PROCEDURE assert (bool_IN IN BOOLEAN
-- ,msg_IN IN VARCHAR2 := null);

Copyright © 2002 by John Beresniewicz

SLPA: implementationSLPA: implementation

• Error message used to signal code
location of bug

PROCEDURE assert (bool_IN IN BOOLEAN
,msg_IN IN VARCHAR2 := null)

IS
BEGIN

IF NOT NVL(bool_IN,FALSE) -- fail on null input
THEN

RAISE_APPLICATION_ERROR
(ASSERTFAIL_C, 'ASSERTFAIL:'||

PKGNAME_C||':'||SUBSTR(msg_IN,1,200)
) ;

END IF;
END assert;

Copyright © 2002 by John Beresniewicz

Transparent error detectionTransparent error detection

FUNCTION tinytest (p1 INTEGER) RETURN NUMBER
IS
BEGIN

assert(p1 IS NOT NULL,’tinytest:p1 null’);
assert(p1 > 0 AND p1 < 100,

‘tinytest:p1 out of range’);
RETURN (p1/10);

END tinytest;

SQL> execute :t :=utl01.tinytest(null);
BEGIN :t :=utl01.tinytest(null); END;

*
ERROR at line 1:
ORA-20999: ASSERTFAIL:UTL01:tinytest:p1 null

Message
identifies
function and
precondition

Client receives
ORA-20999 with
detailed debug
information

Copyright © 2002 by John Beresniewicz

FunctionFunction--oriented programmingoriented programming

• BOOLEAN Functions

• Basic function structure:
– Assert
– Compute
– Return

• Assert functions in higher-level modules

• Assertion-trees

Copyright © 2002 by John Beresniewicz

Example: building a stable moduleExample: building a stable module

• Requirement:
– Boolean function to tell if date falls on weekend

• Issue:
– Location dependent weekend (US and IL)

• Solution:

FUNCTION isWeekend(loc_IN IN varchar2
,date_IN IN date)

RETURN BOOLEAN;

Copyright © 2002 by John Beresniewicz

Contract elementsContract elements

• Date_IN is not null
• Loc_IN is not null
• Loc_IN either ‘US’ or ‘IL’

Preconditions

Postconditions

• Return TRUE if date_IN is weekend
for loc_IN

• Return FALSE otherwise

Hmm...seems
pretty simple

Copyright © 2002 by John Beresniewicz

Module implementationModule implementation

• 9i CASE statement does the work

FUNCTION isWeekend(loc_IN IN varchar2
,date_IN IN date)

RETURN BOOLEAN IS
tmp_dy integer := TO_CHAR(date_IN,‘D’);

BEGIN
assert(loc_IN IN (‘US’,’IL’));
assert(date_IN IS NOT NULL);
CASE loc_IN

WHEN ‘US’ THEN RETURN (tmp_dy IN (7,1));
WHEN ‘IL’ THEN RETURN (tmp_dy IN (6,7));

END CASE;
END isWeekend;

Copyright © 2002 by John Beresniewicz

Problem with TO_CHAR?Problem with TO_CHAR?

• TO_CHAR initializes tmp_dy at declaration

• Do we REALLY know how the ‘D’ format mask
of TO_CHAR works under all NLS settings?

The date format element D returns the number of the day
of the week (1-7). The day of the week that is numbered 1
is specified implicitly by the initialization parameter
NLS_TERRITORY.

Oracle8i SQL Reference

Copyright © 2002 by John Beresniewicz

Asserting problem not presentAsserting problem not present

• New precondition: Sunday is day 1

• Harder: make module succeed for all
NLS settings

• Flexibility vs. stability tradeoffs

-- September 2,2001 is Sunday
assert(1 = TO_CHAR(TO_DATE(’09:02:2001’,’MM:DD:YYYY’)

,’D’));

Copyright © 2002 by John Beresniewicz

Conclusions (opinions)Conclusions (opinions)

• Design by Contract can help reduce
PL/SQL defect rates

• The SLPA technique is a good starting
point

• More work needs to be done on SQL and
contracts

