
Indexes

Who needs them anyway?



Access Methods

• Anticipating patterns of access
– Key lookup 
– Pre-sorted keys

• Query performance vs DML performance
• Brings to fore the physicality of the data
• A cheat



Access Methods

• B*Tree Indexes
• Hashed Clusters
• Bitmap Indexes



B*Tree Indexes

• Conventional
• Compound Key
• Descending Indexes
• Reverse Key Indexes
• Index Organized Tables



Standard B*Tree



Root, Branch and Leaves



Where’s Waldo?



Normal Insertion “Edward”



What about Betty?



Leaf block split



Periodic rebuilds with pct_free



Queries which benefit



Compound Key

• Concatenation of two or more keys
• More cheating



Dept, ename



Queries which benefit



Descending

• Stores keys in reverse order
• Oracle can already scan indexes 

backwards so why this?
• Again anticipation of sort



Descending



Functional Indexes

• Index on f(x)
• Oracle built in functions
• User defined functions
• Whopper of a cheat



Oracle Functions

• UPPER()
• TRIM()
• SUBSTR()
• MONTHS_BETWEEN()
• LENGTH()
• DECODE()



User Functions

• student_rank(SAT, GPA, is_residentp)
• credit_score(income, years_on_job,…)
• astro(birth_date)



Functional Indexes



Issues

• Query_rewrite_enabled=TRUE
• Query_rewrite_integrity=TRUSTED
• Substr(varchar2)
• “deterministic” for user defined functions
• DML more expensive



Compressed Indexes

• Saves space in concatenated indexes with 
highly repetitive data

• Particularly good for large keys



Call List (Uncompressed)



Call List (Compressed)



Issues with Compression

• Saves space
• Potentially reduces physical I/Os
• Increased CPU usage



Reverse Key

• Purpose built for parallel server
• Reverses Oracle representation of key
• Generates pseudo-randomness



Reverse Key



Issues with Reverse Keys

• Index can be used for equality (x = 7)
• But not for range scans (x > 7)



Index Organized Tables

• B*Tree without the table
• Table becomes superfluous
• Co-location of rows with similar or identical 

key values
• Great for large lookup tables



Patient Table



Patient Table



Overflow Table



Full Table Scan Problem



Full scans IOT vs. heap



Hashed Clusters

• Avoids index all together
• Great for very large fixed size tables



taxpayer Hashed Cluster



Hash Cluster



Hash Cluster Overflow



Hashed Cluster Issues

• Great for large fixed sized table
• Can be space inefficient
• Hash collisions possible
• Overflow blocks defeat gains
• May need periodic rebuild



Bitmapped Indexes

• Low cardinality data
• Great for ad-hoc queries when testing for 

equality
• Efficiently represented list of rowids that 

have the same key value
• Excellent for count(*) or existence test



Dating Example



Bush vote’n, Div, MA, Edu, Sox



Dating Example (cont.)



Dating Example (cont.)



Now it’s your turn…



Dictionary

• Large number of words
• Query mostly



Inventory Table

• Moderate insert of new parts
• subpartno affinity
• qty updated/queried frequently
• descript queried rarely



Likely Voter Table

• Phone# or count(*) based on unforeseen 
criteria

• Reloaded from scratch weekly



Thank you
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