
Indexes

Who needs them anyway?



Access Methods

• Anticipating patterns of access
– Key lookup 
– Pre-sorted keys

• Query performance vs DML performance
• Brings to fore the physicality of the data
• A cheat



Access Methods

• B*Tree Indexes
• Hashed Clusters
• Bitmap Indexes



B*Tree Indexes

• Conventional
• Compound Key
• Descending Indexes
• Reverse Key Indexes
• Index Organized Tables



Standard B*Tree



Root, Branch and Leaves



Where’s Waldo?



Normal Insertion “Edward”



What about Betty?



Leaf block split



Periodic rebuilds with pct_free



Queries which benefit



Compound Key

• Concatenation of two or more keys
• More cheating



Dept, ename



Queries which benefit



Descending

• Stores keys in reverse order
• Oracle can already scan indexes 

backwards so why this?
• Again anticipation of sort



Descending



Functional Indexes

• Index on f(x)
• Oracle built in functions
• User defined functions
• Whopper of a cheat



Oracle Functions

• UPPER()
• TRIM()
• SUBSTR()
• MONTHS_BETWEEN()
• LENGTH()
• DECODE()



User Functions

• student_rank(SAT, GPA, is_residentp)
• credit_score(income, years_on_job,…)
• astro(birth_date)



Functional Indexes



Issues

• Query_rewrite_enabled=TRUE
• Query_rewrite_integrity=TRUSTED
• Substr(varchar2)
• “deterministic” for user defined functions
• DML more expensive



Compressed Indexes

• Saves space in concatenated indexes with 
highly repetitive data

• Particularly good for large keys



Call List (Uncompressed)



Call List (Compressed)



Issues with Compression

• Saves space
• Potentially reduces physical I/Os
• Increased CPU usage



Reverse Key

• Purpose built for parallel server
• Reverses Oracle representation of key
• Generates pseudo-randomness



Reverse Key



Issues with Reverse Keys

• Index can be used for equality (x = 7)
• But not for range scans (x > 7)



Index Organized Tables

• B*Tree without the table
• Table becomes superfluous
• Co-location of rows with similar or identical 

key values
• Great for large lookup tables



Patient Table



Patient Table



Overflow Table



Full Table Scan Problem



Full scans IOT vs. heap



Hashed Clusters

• Avoids index all together
• Great for very large fixed size tables



taxpayer Hashed Cluster



Hash Cluster



Hash Cluster Overflow



Hashed Cluster Issues

• Great for large fixed sized table
• Can be space inefficient
• Hash collisions possible
• Overflow blocks defeat gains
• May need periodic rebuild



Bitmapped Indexes

• Low cardinality data
• Great for ad-hoc queries when testing for 

equality
• Efficiently represented list of rowids that 

have the same key value
• Excellent for count(*) or existence test



Dating Example



Bush vote’n, Div, MA, Edu, Sox



Dating Example (cont.)



Dating Example (cont.)



Now it’s your turn…



Dictionary

• Large number of words
• Query mostly



Inventory Table

• Moderate insert of new parts
• subpartno affinity
• qty updated/queried frequently
• descript queried rarely



Likely Voter Table

• Phone# or count(*) based on unforeseen 
criteria

• Reloaded from scratch weekly



Thank you


	Indexes
	Access Methods
	Access Methods
	B*Tree Indexes
	Standard B*Tree
	Root, Branch and Leaves
	Where’s Waldo?
	Normal Insertion “Edward”
	What about Betty?
	Leaf block split
	Periodic rebuilds with pct_free
	Queries which benefit
	Compound Key
	Dept, ename
	Queries which benefit
	Descending
	Descending
	Functional Indexes
	Oracle Functions
	User Functions
	Functional Indexes
	Issues
	Compressed Indexes
	Call List (Uncompressed)
	Call List (Compressed)
	Issues with Compression
	Reverse Key
	Reverse Key
	Issues with Reverse Keys
	Index Organized Tables
	Patient Table
	Patient Table
	Overflow Table
	Full Table Scan Problem
	Full scans IOT vs. heap
	Hashed Clusters
	taxpayer Hashed Cluster
	Hash Cluster
	Hash Cluster Overflow
	Hashed Cluster Issues
	Bitmapped Indexes
	Dating Example
	Bush vote’n, Div, MA, Edu, Sox
	Dating Example (cont.)
	Dating Example (cont.)
	Now it’s your turn…
	Dictionary
	Inventory Table
	Likely Voter Table
	Thank you

